Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (10): 755-764    DOI: 10.11901/1005.3093.2024.448
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Performance of Porous Carbon Materials Derived from Physalis Peruviana L. Calyx Husk
WANG Yuanyuan(), XIA Yingjing, DONG Xingshen, WANG Xueqin, LIU Yanxiu, SONG Hua, LIU Shetian()
College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
Cite this article: 

WANG Yuanyuan, XIA Yingjing, DONG Xingshen, WANG Xueqin, LIU Yanxiu, SONG Hua, LIU Shetian. Preparation and Performance of Porous Carbon Materials Derived from Physalis Peruviana L. Calyx Husk. Chinese Journal of Materials Research, 2025, 39(10): 755-764.

Download:  HTML  PDF(9808KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The calyx husk of Physalis Peruviana L. was firstly pre-carburized at 400 oC to acquire carbon, and then porous carbon materials PLCPC-x (the ratio x represents the mass ratio of KOH to the pre-carbonized material) were prepared with the pre-carburized calyx husk as raw material and KOH solution as activating agent. The results showed that PLCPC-3 possessed a well-developed hierarchical 3D porous structure and a high specific surface area of up to 2703.75 m²·g-¹. By means of testing in a three-electrode set with electrolyte of 6 mol·L-1 KOH solution, it exhibited a high specific capacitance of 349.7 F·g-1 at 0.5 A·g-1 and a high capacitance retention rate of 78.9% at 20 A·g-¹. In a two-electrode system, the constructed symmetric supercapacitor achieved an energy density of approximately 9.0 Wh·kg-1 at a power density of 250 W·kg-1, retaining 96.7% of its initial capacitance after 12000 cycles.

Key words:  composite      supercapacitor      porous carbon material      electrochemical performance     
Received:  05 November 2024     
ZTFLH:  TB332  
Fund: National Natural Science Foundation of China(22278068)
Corresponding Authors:  WANG Yuanyuan, Tel: (0459)6504035, E-mail: wangyuanyuan2016@126.com
LIU Shetian, Tel: (0459)6503167, E-mail: Shetian_liu@nepu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.448     OR     https://www.cjmr.org/EN/Y2025/V39/I10/755

Fig.1  Schematic diagram of the preparation of the PLCPC-x
Fig.2  SEM images and EDS of PLCPC-x (a) PLCPC-0, (b) PLCPC-1, (c) PLCPC-2, (d) PLCPC-3, (e) PLCPC-4, (f, g) elemental mapping of PLCPC-3
Fig.3  TEM images of PLCPC-3 (a, b)
Fig.4  N2 adsorption/desorption isothermal curves (a) and pore size distribution curves (b) of PLCPC-x
SampleSBETa / m2·g-1Smicb / m2·g-1Vtotc / cm3·g-1Vmicd / cm3·g-1
PLCPC-033.520.10.030.01
PLCPC-11617.31305.40.880.65
PLCPC-21969.31409.31.140.71
PLCPC-32703.81697.41.460.85
PLCPC-41708.91347.40.960.67
Table 1  Specific surface area and pore parameters of PLCPC-x
Fig.5  XRD patterns (a) and Raman spectra (b) of PLCPC-x
Fig.6  Total XPS spectrum of PLCPC-3 (a), and high-resolution XPS of C 1s (b) and O 1s (c) of PLCPC-3
Fig.7  CV curves of PLCPC-x at a scan rate of 50 mV·s-1 (a), GCD curves of PLCPC-x at a current density of 0.5 A·g-1 (b), and specific capacitance of PLCPC-x at different current densities (c). CV curves of PLCPC-3 at different scan rates (d) and GCD curves of PLCPC-3 at different current densities (e). Nyquist (f) and Bode (g) plots of PLCPC-x. Composition of total charge storage of PLCPC-0 (h) and PLCPC-3 (i) at 50 mV·s-1 scan rate. Composition of total charge storage for PCLCP-0 (j) and PCLCP-3 (k) at different scan rates
Fig.8  Electrochemical performance of PLCPC-3//PLCPC-3 in 6 mol·L-1 KOH electrolyte solution (a) cyclic voltammetry curves at different scan rates, (b) constant current charge/discharge curves at different current densities, (c) mass specific capacitance at different current densities, (d) Nyquist plots, (e) Ragone plots, (f) cycling stability
MaterialActivatorElectrolyte

Specific

capacitance / F·g-1

Energy density / Wh·kg-1

Power density

/ W·kg-1

Cycling

stability

Reference
Cashew nut huskKOH

6 mol·L-1

KOH

305.2

(1 A·g-1)

11.2400

97.1%

4000 cycles

[45]
ChlorellaZnCl2-KOH

6 mol·L-1

KOH

339

(1 A·g-1)

8.47250

95.17%

10000 cycles

[46]
Willow catkinKOH

6 mol·L-1

KOH

298

(0.5 A·g-1)

21.0180

99.7%

10000 cycles

[47]
Coconut shellKOH

6 mol·L-1

KOH

317.0

(0.5 A·g-1)

13.3250

99.7%

10000 cycles

[48]
Sword bean shellsKOH

6 mol·L-1

KOH

369

(1 A·g-1)

12375

95.7%

10000 cycles

[49]
Corn huskK2CO3

0.5 mol·L-1

H2SO4

269

(0.25 A·g-1)

~10~10

99.5%

20000 cycles

[50]
Chinese fir sawdustNaOH

6 mol·L-1

KOH

260

(0.5 A·g-1)

15.9246

90%

5000 cycles

[51]
Orange peelKOH

6 mol·L-1

KOH

289

(5 A·g-1)

8.9499.7

93.6%

10000 cycles

[52]
Physalis Peruviana L. calyx huskKOH

6 mol·L-1

KOH

349.7

(0.5 A·g-1)

9250

96.7%

12000 cycles

This work
Table 2  Electrochemical properties of some reported carbon materials[45~52]
[1] Subramanian B, Veerappan M, Rajan K, et al. Fabrication of hierarchical indium vanadate materials for supercapacitor application [J]. Global Chall., 2020, 4(11): 2000002
[2] Sharma S, Chand P. Supercapacitor and electrochemical techniques: A brief review [J]. Results Chem., 2023, 5: 100885
[3] Zhang C T, Xing B L, Huang G X, et al. Preparation of walnut shell activated carbons via combination of hydrothermal carbonization and KOH activation [J]. Mater. Rep., 2018, 32(7): 1088
张传涛, 邢宝林, 黄光许 等. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究 [J]. 材料导报, 2018, 32(7): 1088
[4] Wang J, Zhou J H, Zhao W Z. Deep reinforcement learning based energy management strategy for fuel cell/battery/supercapacitor powered electric vehicle [J]. Green Energy Intell. Transp., 2022, 1(2): 100028
[5] Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? [J]. Chem. Rev., 2004, 104(10): 4245
[6] Satpathy S, Das S, Bhattacharyya B K. How and where to use super-capacitors effectively, an integration of review of past and new characterization works on super-capacitors [J]. J. Energy Storage, 2020, 27: 101044
[7] Salleh N A, Kheawhom S, Hamid N A A, et al. Electrode polymer binders for supercapacitor applications: a review [J]. J. Mater. Res. Technol., 2023, 23: 3470
[8] Zhang G Y, Wang A, Ying H, et al. Research progress on biomass-based advanced carbon materials for energy storage [J]. Mod. Chem. Ind., 2023, 43(9): 24
张高月, 王 傲, 应 浩 等. 储能用生物质基先进碳材料的研究进展 [J]. 现代化工, 2023, 43(9): 24
[9] Valencia A, Muñiz-Valencia R, Ceballos-Magaña S G, et al. Cyclohexane and benzene separation by fixed-bed adsorption on activated carbons prepared from coconut shell [J]. Environ. Technol. Innovat., 2022, 25: 102076
[10] Li Y Z, Gupta R, Zhang Q Z, et al. Review of biochar production via crop residue pyrolysis: Development and perspectives [J]. Bioresour. Technol., 2023, 369: 128423
[11] Awogbemi O, Von Kallon D V. Application of biochar derived from crops residues for biofuel production [J]. Fuel Commun., 2023, 15: 100088
[12] Zhang Y L, Chen X G, Wang M Q, et al. Research progress of biomass carbon@MnO2-based electrode materials for supercapacitors [J]. Acta Mater. Compos. Sin., 2023, 40(7): 3812
张亚林, 陈兴刚, 王梦倩 等. 生物质炭@MnO2基超级电容器电极材料研究进展 [J]. 复合材料学报, 2023, 40(7): 3812
[13] Song X Q, Lei X P, Fan K, et al. Research progress of biomass derived carbon in supercapacitors [J]. Acta Mater. Compos. Sin., 2023, 40(3): 1328
宋晓琪, 雷西萍, 樊 凯 等. 基于生物质衍生炭在超级电容器中的研究进展 [J]. 复合材料学报, 2023, 40(3): 1328
[14] Yadav S P S, Bhandari S, Bhatta D, et al. Biochar application: A sustainable approach to improve soil health [J]. J. Agric. Food Res., 2023, 11: 100498
[15] Vaithyanathan V K, Goyette B, Rajagopal R. A critical review of the transformation of biomass into commodity chemicals: Prominence of pretreatments [J]. Environ. Challenges, 2023: 100700
[16] Antar M, Lyu D, Nazari M, et al. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization [J]. Renewable Sustainable Energy Rev., 2021, 139: 110691
[17] Song C L, Ren K, Teng Z C, et al. Preparation of activated carbon from unburned carbon in biomass fly ash and its supercapacitor performance [J]. J. Fuel Chem. Technol., 2021, 49(12): 1936
宋传林, 任 科, 滕召才 等. 生物质飞灰未燃尽炭制备活性炭及其超级电容性能研究 [J]. 燃料化学学报(中英文), 2021, 49(12): 1936
[18] Zhang D Z, Zhang Y X, Liu H L, et al. Effect of pyrolysis temperature on carbon materials derived from reed residue waste biomass for use in supercapacitor electrodes [J]. J. Phys. Chem. Solids, 2023, 178: 111318
[19] Wei X, Qiu B P, Xu L, et al. High performance hierarchical porous carbon derived from waste shrimp shell for supercapacitor electrodes [J]. J. Energy Storage, 2023, 62: 106900
[20] Dai Z, Ren P G, Guo Z Z, et al. Three-dimensional porous carbon materials derived from locust for efficient NOS co-doped supercapacitors by facile self-template and in-situ doping method [J]. Fuel Process. Technol., 2021, 213: 106677
[21] Erkaya T, Dağdemir E, Şengül M. Influence of Cape gooseberry (Physalis peruviana L.) addition on the chemical and sensory characteristics and mineral concentrations of ice cream [J]. Food Res. Int., 2012, 45(1): 331
[22] Puente L A, Pinto-Muñoz C A, Castro E S, et al. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review [J]. Food Res. Int., 2011, 44(7): 1733
[23] Al-Olayan E M, El-Khadragy M F, Aref A M, et al. The potential protective effect of Physalis peruviana L. against carbon tetrachloride‐induced hepatotoxicity in rats is mediated by suppression of oxidative stress and downregulation of MMP‐9 expression [J]. Oxid. Med. Cell. Longev., 2014, 2014: 381413
[24] El-Beltagi H S, Mohamed H I, Safwat G, et al. Chemical composition and biological activity of Physalis peruviana L [J]. Gesunde Pflanz., 2019, 71(2): 113
[25] Yang L, Zheng H, Liu L, et al. N, O self-doped hierarchical porous carbon materials for high-performance super-capacitors [J]. Results Chem., 2021, 3: 100109
[26] Ding F F, Li J, Du H M, et al. Highly porous heteroatom doped-carbon derived from orange peel as electrode materials for high-performance supercapacitors [J]. Int. J. Electrochem. Sci., 2020, 15(6): 5632
[27] Ran F T, Yang X B, Xu X Q, et al. Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor [J]. Chem. Eng. J., 2021, 412: 128673
[28] Wang Y H, Liu R N, Tian Y D, et al. Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors [J]. Chem. Eng. J., 2020, 384: 123263
[29] Du W M, Zhang Z R, Du L G, et al. Designing synthesis of porous biomass carbon from wheat straw and the functionalizing application in flexible, all-solid-state supercapacitors [J]. J. Alloy. Compd., 2019, 797: 1031
[30] Tang D Y, Luo Y Y, Lei W D, et al. Hierarchical porous carbon materials derived from waste lentinus edodes by a hybrid hydrothermal and molten salt process for supercapacitor applications [J]. Appl. Surf. Sci., 2018, 462: 862
[31] Gao S Y, Chen Y L, Fan H, et al. Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors [J]. J. Mater. Chem., 2014, 2A(10): 3317
[32] Pachfule P, Shinde D, Majumder M, et al. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework [J]. Nat. Chem., 2016, 8(7): 718
[33] Zhao G Y, Chen C, Yu D F, et al. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors [J]. Nano Energy, 2018, 47: 547
[34] Yang H F, Sun X Y, Zhu H, et al. Nano-porous carbon materials derived from different biomasses for high performance supercapacitors [J]. Ceram. Int., 2020, 46(5): 5811
[35] Zhan Y B, Zhou H M, Guo F Q, et al. Preparation of highly porous activated carbons from peanut shells as low-cost electrode materials for supercapacitors [J]. J. Energy Storage, 2021, 34: 102180
[36] Duan B, Gao X, Yao X, et al. Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors [J]. Nano Energy, 2016, 27: 482
[37] Zou K X, Deng Y F, Chen J P, et al. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors [J]. J. Power Sources, 2018, 378: 579
[38] Su X L, Cheng M Y, Fu L, et al. Superior supercapacitive performance of hollow activated carbon nanomesh with hierarchical structure derived from poplar catkins [J]. J. Power Sources, 2017, 362: 27
[39] Luo Z J, Lin N, Sun M C, et al. Synthesis of 3D-interconnected hierarchical porous carbon from heavy fraction of bio-oil using crayfish shell as the biological template for high-performance supercapacitors [J]. Carbon, 2021, 173: 910
[40] Tang J G, Guo Z Y, Kong X J, et al. Soybean meal-derived heteroatoms-doped porous carbons for supercapacitor electrodes [J]. Mater. Chem. Phys., 2022, 284: 126055
[41] Wang A, Sun K, Xu R T, et al. Cleanly synthesizing rotten potato-based activated carbon for supercapacitor by self-catalytic activation [J]. J. Cleaner Prod., 2021, 283: 125385
[42] Zhang Q, Wang J L, Deng M G. Preparation of porous carbon from buckwheat husk and its electrochemical properties [J]. Int. J. Electrochem. Sci., 2022, 17(11): 221145
[43] Wang D W, Lian Y, Fu H L, et al. Flexible porous carbon nanofibers derived from cuttlefish ink as self-supporting electrodes for supercapacitors [J]. J. Power Sources, 2024, 599: 234216
[44] Liang Y N, Zhou Y Q, Smith R L, et al. Ultra-thin highly-wrinkled graphene-like nanosheets for supercapacitor electrodes via 4-nitrocatechol and solvent-induced self-assembly [J]. Carbon, 2023, 204: 495
[45] Cai N, Cheng H, Jin H, et al. Porous carbon derived from cashew nut husk biomass waste for high-performance supercapacitors [J]. J. Electroanal. Chem., 2020, 861: 113933
[46] Lu C X, Yu Z S, Zhang X Y, et al. ZnCl2-KOH modulation of biomass-derived porous carbon for supercapacitors [J]. Energy Sources Part A-Recovery Util. Environ. Eff., 2024, 46(1): 2212
[47] Li Y J, Wang G L, Wei T, et al. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors [J]. Nano Energy, 2016, 19: 165
[48] Zhao Y T, Mu J C, Wang Y Y, et al. Preparation of hierarchical porous carbon through one-step KOH activation of coconut shell biomass for high-performance supercapacitor [J]. J. Mater. Sci.: Mater. Electron., 2023, 34(6): 527
[49] Luo L, Luo L C, Deng J P, et al. High performance supercapacitor electrodes based on B/N Co-doped biomass porous carbon materials by KOH activation and hydrothermal treatment [J]. Int. J. Hydrog. Energy, 2021, 46(63): 31927
[50] Lobato-Peralta D R, Duque-Brito E, Orugba H O, et al. Sponge-like nanoporous activated carbon from corn husk as a sustainable and highly stable supercapacitor electrode for energy storage [J]. Diamond Relat. Mater., 2023, 138: 110176
[51] Yang X, Wang X Q, Yu X W, et al. In-situ N, P co-doped porous carbon derived from biomass waste for supercapacitors [J]. J. Electroanal. Chem., 2024, 972: 118646
[52] Li Y J, Zou X F, Li S Q, et al. Biomass-derived B/N/P co-doped porous carbons as bifunctional materials for supercapacitors and sodium-ion batteries [J]. J. Mater. Chem., 2024, 12: 18324
[1] LIU Jinling, ZHANG Yan, QI Dongming, YU Yihao. Preparation and Performance of Flame-retardant Electromagnetic Shielding Composite Films of Sandwich Structure[J]. 材料研究学报, 2025, 39(9): 650-660.
[2] XIE Fangxia, WU Guangqing, ZHANG Shiwen, LU Zeyi, MU Yanming, HE Xueming. Preparation and Performance of a Novel Al-alloy Based Composite 7075-TiB2[J]. 材料研究学报, 2025, 39(9): 683-693.
[3] WANG Binglin, CHAI Yifeng, TAN Shengxia, GUO Shengwei, JIANG Ru, ZHU Zhonghua, ZHANG Yutao, HUANG Guifang, HUANG Weiqing. Construction and Photocatalytic Performance Study of g-C3N4/CdS S-scheme Heterojunction[J]. 材料研究学报, 2025, 39(9): 712-720.
[4] ZHANG Ruoyun, WANG Wei, GONG Penghui, DING Shijie, LIU Xianhao, SUN Zhuang, LV Fanfan, GAO Yuan, WANG Kuaishe. High-temperature Tribological Performance of Organic-inorganic Hybrid Modified Phosphate/Graphite Lubricating Coatings[J]. 材料研究学报, 2025, 39(9): 661-672.
[5] YANG Zhiru, HOU Wentao, ZHOU Hai, YANG Zi, HE Hao, JIN Chao. Synthesis of High-performance Core-shell Structured Electrodes of Co3O4/Co9S8 for Quasi-solid-state Supercapacitors[J]. 材料研究学报, 2025, 39(8): 569-582.
[6] LIU Endian, BAI Yu, LI Jiawen, HAO Hai. Preparation of Bi-continuous Interpenetrating Porous Composite and Its Heat Treatment Enhancement[J]. 材料研究学报, 2025, 39(7): 481-488.
[7] SUN Shimao, LIU Hongchang, LIU Hongwei, WANG Jun, SHANG Chenkai. Preparation and Electrochemical Properties of Rare Earth Ion Doped Diatom Anode Materials[J]. 材料研究学报, 2025, 39(7): 499-509.
[8] CHEN Yuming, ZHU Xiaoyong, TAN Xiaoyue, LIU Jiaqin, WU Yucheng. Mechanical Properties of W-Y2O3 Composites as Candidate of the First Wall Material Faced Plasma[J]. 材料研究学报, 2025, 39(7): 510-520.
[9] MA Xue′e, HU Meifeng, SONG Xueli, CHANG Yue, ZHA Fei. Photocatalytic Degradation of Methyl Orange Using Palygorskite Supported Zn-In LDO/ZnS/In2S3 Composites[J]. 材料研究学报, 2025, 39(6): 413-424.
[10] YANG Yanyan, LIU Yan, YANG Song, WANG Zitong, ZHU Feng, YU Zhongliang, HAO Xiaogang. Performance of Graphene-doped Polypyrrole/Co-Ni Double Hydroxide for Electronic Separation of Low Concentration Phosphates[J]. 材料研究学报, 2025, 39(6): 425-434.
[11] HU Yong, LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao. Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites[J]. 材料研究学报, 2025, 39(5): 353-361.
[12] LI Haibin, XU Huiting, TANG Wei, LV Haibo, SHUAI Meirong. Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel[J]. 材料研究学报, 2025, 39(5): 362-370.
[13] LIU Yanyun, WANG Na, ZHANG Zhihua, BAI Wen, LIU Yunjie, CHEN Yongqiang, LI Wanxi, LI Yu. MOFs Derived C/LDH/rGO Network Composite Materials for High Specific Capacity High-performance Aqueous Zinc Ion Capacitors[J]. 材料研究学报, 2025, 39(5): 371-376.
[14] QIU Wei, LI Yulin, YAN Rui, LI Yawen, CHEN Wei, GAN Lang, REN Yanjie, CHEN Jian. Effect of Al Content on Corrosion and Discharge Properties of Extruded Mg-Al-Ca-Mn Alloys as Anode Material for Mg-air Batteries[J]. 材料研究学报, 2025, 39(5): 389-400.
[15] LI Ying, NIE Xuetong, QIAN Liguo, ZHU Yiren. Synthesis of Co3O4/ZnO@MG-C3Nx Catalysts and Their Visible Light Degradation of Methylene Blue Performance[J]. 材料研究学报, 2025, 39(4): 241-250.
No Suggested Reading articles found!