Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (8): 619-631    DOI: 10.11901/1005.3093.2024.433
ARTICLES Current Issue | Archive | Adv Search |
Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube
ZHANG Wei1,2,3, ZHANG Bing1,3(), ZHOU Jun2, LIU Yue2, WANG Xufeng2, YANG Feng2, ZHANG Haiqin2
1.College of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.Xi'an Western Energy Material Technologies Co., Ltd., Xi'an 710299, China
3.National and Local Engineering Researching Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an 710055, China
Cite this article: 

ZHANG Wei, ZHANG Bing, ZHOU Jun, LIU Yue, WANG Xufeng, YANG Feng, ZHANG Haiqin. Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube. Chinese Journal of Materials Research, 2025, 39(8): 619-631.

Download:  HTML  PDF(26172KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A kind of cold rolled aviation tube of TA18 type that has been subjected to recrystallization annealing treatment to produce an uniform initial texture. Subsequently, these tubes were subjected to a second round cold rolling again by the same deformation amount (60%) but different Q ratios (1.1-2.0). On this basis, the influence of cold rolling Q ratio on the plastic deformation texture evolution of TA18 aviation tube was studied by using the electron backscatter diffraction (EBSD) technique, in terms of the In-Grain Misorientation Axes (IGMA) and microstructures of cold rolled tubes with different Q ratios. The results show that the cold rolled tubes with different Q ratio present a "river like" fiber structure along the axial (RD) direction, showing the typical characteristics of large plastic deformation. With the increase of Q ratio, the grain orientation changes from the tangential direction (TD) to the one close to the normal direction (ND). The cold rolling Q ratio has a synergistic effect on the plastic deformation behavior and texture evolution of TA18 tube: with the increase of Q ratio, the Taylor axes distribution changes from <0001> to <101¯0>, and the plastic deformation mechanism of cold rolled tubes changes from prismatic slip to pyramidal slip. The reason may be that when the Q ratio increases, the c axis of grains continuously shifts from TD direction to ND direction, and the Schmid factor of conical slip systems increases, which leads to the easy start of conical slip systems; At the same time, the <0001>//ND texture gradually replaced the <0001>//TD texture as the main texture type, and the radial texture factor at the base of the tube was continuously enhanced. In accordance with the AMS standard, when the cold rolling Q ratio is ≥ 1.49, the contraction strain ratio (CSR) of TA18 tubes meets the requirements.

Key words:  metallic materials      grain orientation      cold rolling      deformation mechanism      texture evolution     
Received:  23 October 2024     
ZTFLH:  TG146  
Fund: Construction of the "Scientists+Engineers" Team in Qinchuangyuan, Shaanxi Province(2022KXJ-145);Key R & D Projects in Shaanxi Province(2024CY-JJQ-71)
Corresponding Authors:  ZHANG Bing, Tel: 13991363825, E-mail: r.zhang@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.433     OR     https://www.cjmr.org/EN/Y2025/V39/I8/619

Fig.1  EBSD sample preparation process
Fig.2  Orientation difference axis method[16] (a) Taylor axis schematic diagram, (b) position of Taylor axis of slip system in the distribution diagram of orientation difference axis
Slip systemNumber of variantsTaylor axisNumber of Taylor axis variants
{011¯0}<2¯110>3<0001>1
{0001}<2¯110>3<01¯10>3
{011¯1¯}<2¯110>6<01¯12>6
{011¯1}<1¯1¯23>12<138¯5¯3>12
{12¯11}<112¯3>12<61¯5¯3>12
{112¯2}<112¯3>6<11¯00>3
Table 1  Deformation modes available in titanium and corresponding Taylor axis[16]
Fig.3  IPF map of cold rolled tubes with different Q ratios (a) Q = 1.1, (b) Q = 1.4, (c) Q = 1.6, (d) Q = 1.8, (e) Q = 2.0
Fig.4  KAM map of cold rolled tubes with different Q ratios (a) Q = 1.1, (b) Q = 1.4, (c) Q = 1.6, (d) Q = 1.8, (e) Q = 2.0
Fig.5  KAM distribution of cold rolled tubes with different Q ratios (a) Q = 1.1, (b) Q = 1.4, (c) Q = 1.6, (d) Q = 1.8, (e) Q = 2.0
Fig.6  {0001}、{101¯0}、{112¯0} pole figures and {0001} Kearns factor (a) Q = 1.1, (b) Q = 1.4, (c) Q = 1.6, (d) Q = 1.8, (e) Q = 2.0
Fig.7  CSR value of cold-rolled tubes
Fig.8  Schmid factor for annealed tubes
Fig.9  IGMA distribution of cold-rolled tubes with Q = 1.1
Fig.10  IGMA distribution of cold-rolled tubes with Q = 1.6
Fig.11  IGMA distribution of cold-rolled tubes with Q = 2.0
QTaylor axesMain slip systemsSlip mechanismsKearns factor
1.1<0001>{011¯0}<112¯0>Prismatic<a> slipFn, Ft, Fr
1.4<0001>{011¯0}<112¯0>Prismatic<a> slipFn↑, Ft↓, Fr
1.6<0001> and <01¯10>{011¯0}<112¯0> and {112¯2}<1¯1¯23>Prismatic<a> slip + Pyramidal<c + a>slipFn↑, Ft↓, Fr
1.8<0001> and <01¯10>{011¯0}<112¯0> and {112¯2}<1¯1¯23>Prismatic<a> slip + Pyramidal<c + a>slipFn↑, Ft↓, Fr
2.0<01¯10>{112¯2}<1¯1¯23>Pyramidal<c + a>slipFn↑, Ft↓, Fr
Table 2  Plastic deformation mechanism of cold-rolled tubes with different Q ratios
Q ratioEuler (φ1, , φ2)Main texture componentAngle with (0002) surface / (°)
1.1(87, 82, 5)(2¯42¯1)[0001]81
1.4(92, 32, 55)(112¯6)[1¯1¯21]28
1.6(80, 31, 5)(112¯6)[12¯11]28
1.8(81, 25, 5)(112¯6)[12¯11]28
2.0(88, 31, 60)(112¯6)[1¯1¯21]28
Table 3  Main texture components of TA18 tubes
Fig.12  Schematic diagram of texture evolution of cold-rolled tubes with different Q ratios (a) texture evolution in basal and RD directions, (b) grain orientation evolution
[1] Wei D, Chen Y Y, Li H, et al. Residual stress evolution and tailoring of cold pilgered Ti-3Al-2.5V tube [J]. Int. J. Mech. Sci., 2022, 225: 107366
[2] Li Z X, Zhan M, Guo K, et al. Texture development of Ti-3Al-2.5V titanium alloy tubes [J]. Rare Met. Mater. Eng., 2017, 46(11): 3169
[3] Yang J C, Li H, Huang D, et al. Deformation-based joining for high-strength Ti-3Al-2.5V tubular fittings based on internal roller swaging [J]. Int. J. Mech. Sci., 2020, 171: 105367
[4] Liu F, Li Y, Wang W R, et al. Effect of texture on circumferential tensile properties of TA18 titanium alloy tubing [J]. Rare Met. Mater. Eng., 2020, 49(6): 2011
刘 凡, 李 赟, 王文睿 等. TA18钛合金管材织构对环向拉伸性能的影响 [J]. 稀有金属材料与工程, 2020, 49(6): 2011
[5] Ye Y, Wang J Y. An overview on application status and processing technology development of titanium alloy [J]. Mater. Rep., 2012, 26(): 360
叶 勇, 王金彦. 钛合金的应用现状及加工技术发展概况 [J]. 材料导报, 2012, 26(): 360
[6] Li B, Gupta M C. Crack growth life of Ti-3Al-2.5V tubes under internal impulse pressure [J]. Mater. Sci. Eng., 2006, 431A(1-2) : 146
[7] Nan L, Yang Y S, Qi Y H, et al. Rolling process of high-strength TA18 titanium alloy tubes for aviation [J]. Rare Met. Mater. Eng., 2013, 42(1): 166
南 莉, 杨亚社, 齐元昊 等. 航空用高强TA18钛合金管材的轧制工艺 [J]. 稀有金属材料与工程, 2013, 42(1): 166
[8] Yang Y S, Yang Y F, Luo D C, et al. Study on processing technology of TA18 titanium tubes for aviation [J]. Rare Met. Mater. Eng., 2013, 42(3): 625
杨亚社, 杨永福, 罗登超 等. 航空用TA18管材加工工艺研究 [J]. 稀有金属材料与工程, 2013, 42(3): 625
[9] Chen Y, Li J S, Sun F, et al. Investigation of the microstructure and texture of TA18 tubes during cold-rolling process [J]. J. Plast. Eng., 2012, 19(1): 35
陈 逸, 李金山, 孙 峰 等. 冷轧TA18管材变形过程中微观组织及织构 [J]. 塑性工程学报, 2012, 19(1): 35
[10] Singh J, Mahesh S, Roy S, et al. A miniature physical simulator for pilgering [J]. J. Mater. Process. Technol., 2016, 237: 126
[11] Xu J P, Liu C Z, Wu J P, et al. Three-dimensional microstructure and texture evolution of Ti35 alloy applied in nuclear industry during plastic deformation at various temperatures [J]. Mater. Sci. Eng., 2021, 819A: 141508
[12] Zheng G M, Mao X N, Tang B, et al. Evolution of microstructure and texture of a near α titanium alloy during forging bar into disk [J]. J. Alloy. Compd., 2020, 831: 154750
[13] Zhang W F, Wang Y H, Li Y, et al. Performance evaluation and control methods of high strength TA18 alloy tube [J]. Rare Met. Mater. Eng., 2012, 41(7): 1239
张旺峰, 王玉会, 李 艳 等. 高强度TA18合金管材性能评价与控制方法研究 [J]. 稀有金属材料与工程, 2012, 41(7): 1239
[14] Li H, Wei D, Zhang H Q, et al. Texture evolution and controlling of high-strength titanium alloy tube in cold pilgering for properties tailoring [J]. J. Mater. Process. Technol., 2020, 279: 116520.
[15] Yang Q, Hui S X, Ye W J, et al. Effect of ‘Q’ ratio on texture evolution of Ti-3Al-2.5V alloy tube during rolling [J]. Materials (Basel), 2022, 15(3): 817
[16] Chun Y B, Battaini M, Davies C H J, et al. Distribution characteristics of in-grain misorientation axes in cold-rolled commercially pure titanium and their correlation with active slip modes [J]. Metall. Mater. Trans., 2010, 41A(13) : 3473
[17] Kearns J J. On the relationship among `f' texture factors for the principal planes of zirconium, hafnium and titanium alloys [J]. J. Nucl. Mater., 2001, 299(2): 171
[18] Yu H B, Luan B F, Chen J W, et al. EBSD analysis of the distribution of in-grain misorientation axes in cold-rolled Zr alloy [J]. J. Chin. Electron Microsc. Soc., 2011, 30(Z1): 365
余泓冰, 栾佰峰, 陈建伟 等. 冷轧锆合金晶粒内取向差轴分布规律的EBSD研究 [J]. 电子显微学报, 2011, 30(Z1): 365
[19] Luan B F, Xiao D P, He F F. Evolution of microstructure and texture of pure zirconium during rolling process [J]. J. Chin. Electron Microsc. Soc., 2012, 31(6): 476
栾佰峰, 肖东平, 贺方方. 纯锆轧制过程中的组织与织构演变规律 [J]. 电子显微学报, 2012, 31(6): 476
[20] Sheng Z M, Zhang H, Zhang W F, et al. Distribution of texture along tube wall thickness of TA18 alloy tube [J]. Rare Met. Mater. Eng., 2017, 46(10): 3073
盛泽民, 张 晖, 张旺峰 等. TA18钛合金航空管材织构沿层深的分布 [J]. 稀有金属材料与工程, 2017, 46(10): 3073
[1] TAN Dexin, CHEN Shihui, LUO Xiaoli, NING Xiaomei, WANG Yanli. Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol[J]. 材料研究学报, 2025, 39(8): 632-640.
[2] ZHOU Yingying, ZHANG Yingxian, DAN Zhuoya, DU Xu, DU Haonan, ZHEN Enyuan, LUO Fa. Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics[J]. 材料研究学报, 2025, 39(8): 561-568.
[3] LU Tong, WANG Yana, ZHANG Chao, LEI Peng, ZHANG Hongrong, HUANG Guangwei, ZHENG Liyun. Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets[J]. 材料研究学报, 2025, 39(8): 612-618.
[4] GENG Ruiwen, YANG Zhijiang, YANG Weihua, XIE Qiming, YOU Jinjing, LI Lijun, WU Haihua. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. 材料研究学报, 2025, 39(8): 603-611.
[5] WANG Mingyu, LI Shujun, HE Zhenghua, TANG Mingde, ZHANG Siqian, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[7] LIU Jing, LI Yunjie, QIN Yu, LI Linlin. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. 材料研究学报, 2025, 39(7): 521-532.
[8] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[9] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[10] HAN Leilei, WANG Wentao, WU Yun, CHEN Jiajun, ZHAO Yong. High Temperature Growth Process of YBCO Superconducting Solder by Fluorine-free Chemical Solution Method[J]. 材料研究学报, 2025, 39(6): 474-480.
[11] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
[12] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[13] WANG Henglin, DING Hanlin, CHAI Feng, LUO Xiaobing, WANG Zijian, XIANG Chongchen. Effect of Quenched-tempered Heat Treatment on Microstructure and Precipitation of High Strength Low Alloy Steel Containing Copper After Being Hot Rolled at Different Temperatures[J]. 材料研究学报, 2025, 39(6): 401-412.
[14] YUAN Xinyu, SHI Fei, LIU Jingxiao, ZHANG Haojie, YANG Dayi, WANG Meiyu, REN Ming. Effect of Er2O3 Addition on Crystallization Behavior and Properties of Lithium Disilicate Glass Ceramics[J]. 材料研究学报, 2025, 39(6): 455-462.
[15] LI Haibin, XU Huiting, TANG Wei, LV Haibo, SHUAI Meirong. Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel[J]. 材料研究学报, 2025, 39(5): 362-370.
No Suggested Reading articles found!