Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (2): 153-160    DOI: 10.11901/1005.3093.2023.617
ARTICLES Current Issue | Archive | Adv Search |
Effect of SiC Content on Microstructure and Corrosion Resistance of Micro-arc Oxidation Film on Composites SiCP/6092 Al-alloy
YU Wenjing1, LIU Chunzhong1(), ZHANG Hongliang1, LU Tianni1, WANG Dong2, LI Na1, HUANG Zhenwei1
1 Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

YU Wenjing, LIU Chunzhong, ZHANG Hongliang, LU Tianni, WANG Dong, LI Na, HUANG Zhenwei. Effect of SiC Content on Microstructure and Corrosion Resistance of Micro-arc Oxidation Film on Composites SiCP/6092 Al-alloy. Chinese Journal of Materials Research, 2025, 39(2): 153-160.

Download:  HTML  PDF(5425KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composites of SiCP/6092 Al-alloy with 0%, 17% and 30% SiC (volume fraction) were prepared by powder metallurgy, and then micro-arc oxidation films were made on the composites in sodium silicate electrolyte via micro-arc oxidation facility with an adjustable double pulse power supplier, and then the microstructure and composition, as well as the corrosion resistance of the micro-arc oxidation films were characterized by XRD, SEM, and Auto-Lab methods. The results show that the prepared films composed of an inner dense layer and an external loose layer, which are mainly composed of α-Al2O3, γ-Al2O3 and Mullite. There are many tiny pores on the film surface, and the pore diameter and surface roughness decrease with the increase of SiC content in the matrix. The SiC particles in the matrix have an inhibitory effect during the micro arc oxidation process, thus the growth of the oxide films slows down with the increase of SiC content, but the SiC particles do not decompose to participate in the oxidation reaction. The thickness of the loose layer decreases first and then increases with the increase of SiC content, and the thickness of the dense layer increases first and then decreases with the increase of SiC content. Among others, the oxide film on the composite of SiCP/6092 Al-alloy with 17% SiC (volume fraction) particles had the best corrosion resistance with free corrosion potential of -0.466 V, corrosion current density of 3.82 × 10-9 A·cm-2 and polarization resistance of 1.0 × 105 Ω·cm2.

Key words:  material surface and interface      layer growth      micro-arc oxidation      SiCP/Al composite material      corrosion protection     
Received:  28 December 2023     
ZTFLH:  TGN174  
Corresponding Authors:  LIU Chunzhong, Tel: 18040038858, E-mail: czliu@sau.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.617     OR     https://www.cjmr.org/EN/Y2025/V39/I2/153

CuMgSiFeZnMnCrAl
0.900.990.730.060.0040.020.005Bal.
Table 1  Chemical composition of 6092 aluminum alloy (mass fraction, %)
Fig.1  XRD spectra of SiCP/6092 aluminum matrix composite microarc oxide films (a) and relative content of major phases (b)
Fig.2  XRD spectra of 17% SiCP/6092 aluminum matrix composite microarc oxide film
Fig.3  SEM images of SiCP/6092 aluminum matrix composite micro-arc oxide film with different volume fraction of SiC (a) 0%, (b) 17%, (c) 30%
ElementCONaAlSi
0% SiC (volume fraction)-40.401.0651.167.38
17% SiC (volume fraction)4.8447.361.5432.3113.95
30% SiC (volume fraction)36.7935.743.5011.4610.28
Table 2  EDS results of SiCP/6092 aluminum matrix composite microarc oxide films (%, mass fraction)
Fig.4  Roughness and pore diameter plots of SiCP/6092 aluminum matrix composite microarc oxidation films
Fig.5  Cross-sectional SEM and EDS images of SiCP/6092 aluminum matrix composite microarc oxide films with different volume fraction of SiC (a) 0%, (b) 17%, (c) 30%
Fig.6  Schematic illustration of SiCP/6092 aluminum matrix composite microarc oxide film growth
Fig.7  Schematic illustration of SiC particles in the microarc oxidation process
Fig.8  Thickness of micro-arc oxidation films of SiCP/6092 aluminum matrix composites
Fig.9  SiCP/6092 aluminum matrix composite and microarc oxide film dynamic spot polarization curves

Samples

(volume fraction)

Ecorr

/ V

Icorr

/ A·cm-2

Rcorr

/ Ω·cm2

0%-0.9033.48 × 10-69.6 × 103
17%-0.6942.27 × 10-64.1 × 103
30%-0.6821.91 × 10-62.9 × 103
MAO-0%-0.5776.66 × 10-98.1 × 104
MAO-17%-0.4663.82 × 10-91.0 × 105
MAO-30%-0.8531.03 × 10-85.9 × 104
Table 3  Parameters for fitting kinetic potential polarization curves of SiCP/6092 aluminum matrix composites and microarc oxide films
1 Alsrayheen E, McLeod E, Rateick R, et al. Impact of ac/dc spark anodizing on the corrosion resistance of Al-Cu alloys [J]. Electrochim. Acta, 2011, 56(17): 6041
2 Fadaee H, Javidi M. Investigation on the corrosion behaviour and microstructure of 2024-T3 Al alloy treated via plasma electrolytic oxidation [J]. J. Alloys Compd., 2014, 604: 36
3 Allachi H, Chaouket F, Draoui K. Corrosion inhibition of AA6060 aluminium alloy by lanthanide salts in chloride solution [J]. J. Alloy Compd., 2009, 475(1-2): 300
4 Li H X, Rudnev V S, Zheng X H, et al. Characterization of Al2O3 ceramic coatings on 6063 aluminum alloy prepared in borate electrolytes by micro-arc oxidation [J]. J. Alloy Compd., 2008, 462(1-2): 99
5 Hihara L H, Latanision R M. Corrosion of metal matrix composites [J]. Int. Mater. Rev., 1994, 39: 245
6 Paciej R C, Agarwala V S. Influence of processing variables on the corrosion susceptibility of metal-matrix composites [J]. Corrosion, 1988, 44: 680
7 England J, Hall I W. On the effect of the strength of the matrix in metal matrix composites [J]. Scr. Metall., 1986, 20: 697
8 Arsenault R J, Fisher R M. Microstructure of fiber and particulate SiC in 6061 Al composites [J]. Scr. Metall., 1983, 17(1): 67
9 Hihara L H, Latanision R M. Galvanic corrosion of aluminum-matrix composites [J]. Corrosion, 1992, 48: 546
10 Deuis R L, Green L, Subramanian C, et al. Influence of the reinforcement phase on the corrosion of aluminium composite coatings [J]. J. Mater. Sci. Lett., 1997, 16: 440
11 Deuis R L, Green L, Subramanian C, et al. Corrosion behavior of aluminum composite coatings [J]. Corrosion, 1997, 53: 880
12 Wei T B, Tian J, Yan F Y. Structure and wear-resistant properties of ceramic layer on LY12 Al alloy by micro-arc oxidation [J]. Chin. J. Mater. Res., 2004, 18(2): 161
魏同波, 田 军, 阎逢元. LY12铝合金微弧氧化陶瓷层的结构和性能 [J]. 材料研究学报, 2004, 18(2): 161
13 Xia L Q, Han J M, Yang S, et al. Growth process of scanning micro arc oxidation coatings on A356 alloy and their corrosion resistance [J]. Chin. J. Mater. Res., 2016, 30(12): 914
夏伶勤, 韩建民, 杨 莎 等. A356铝合金扫描式微弧氧化涂层的成膜过程及耐腐蚀性能 [J]. 材料研究学报, 2016, 30(12): 914
doi: 10.11901/1005.3093.2016.395
14 Gao W, Liu J N, Wei J P, et al. Structure and properties of Cu2O doped micro arc oxidation coating on TC4 titanium alloy [J]. Chin. J. Mater. Res., 2022, 36(6): 409
doi: 10.11901/1005.3093.2021.411
高 巍, 刘江南, 魏敬鹏 等. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能 [J]. 材料研究学报, 2022, 36(6): 409
15 Bayati M R, Moshfegh A Z, Golestani-Fard F, et al. (WO3) x -(TiO2)1- x nano-structured porous catalysts grown by micro-arc oxidation method: characterization and formation mechanism [J]. Mater. Chem. Phys., 2010, 124(1): 203
16 Xue W B, Deng Z W, Lai Y, et al. Analysis of phase distribution for ceramic coatings formed by microarc oxidation on aluminum alloy [J]. J. Am. Ceram. Soc., 1998, 81(5): 1365
17 Krishna L R, Purnima A S, Sundararajan G. A comparative study of tribological behavior of microarc oxidation and hard-anodized coatings [J]. Wear, 2006, 261(10): 1095
18 Lee K M, Ko Y G, Shin D H. Incorporation of multi-walled carbon nanotubes into the oxide layer on a 7075 Al alloy coated by plasma electrolytic oxidation: coating structure and corrosion properties [J]. Curr. Appl. Phys., 2011, 11(suppl.4): S55
19 Doolabi D S, Ehteshamzadeh M, Mirhosseini S M M. Effect of NaOH on the structure and corrosion performance of alumina and silica PEO coatings on aluminum [J]. J. Mater. Eng. Perform., 2012, 21(10): 2195
20 Hussein R O, Northwood D O, Nie X. The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys [J]. Surf. Coat. Technol., 2013, 237: 357
21 Li X J, Zhang M, Wen S, et al. Microstructure and wear resistance of micro-arc oxidation ceramic coatings prepared on 2A50 aluminum alloys [J]. Surf. Coat. Technol., 2020, 394: 125853
22 Sundararajan G, Krishna L R. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology [J]. Surf. Coat. Technol., 2003, 167: 269
23 Wang Y Q, Wang X J, Gong W X, et al. Effect of SiC particles on microarc oxidation process of magnesium matrix composites [J]. Appl. Surf. Sci., 2013, 283: 906
24 Jiang C Y, Wang Y M, Wang S Q, et al. Growth characteristics and properties of plasma electrolytic oxidation coatings produced in different electrolytes on SiCP/Al composite [J]. Mater. Charact., 2023, 205: 113344
25 Du C Y, Huang S T, Yu X L, et al. Microstructure and properties of plasma electrolytic oxidation coating on 55% SiCP/Al matrix composites [J]. Surf. Coat. Technol., 2021, 420: 127321
26 Hou X Y, Huang H B, Li Y F, et al. Stable and variable—α-alumina: from properties, synthesis to applications [J]. China Ceram. Ind., 2022, 29(5): 30
侯欣怡, 黄灏彬, 李一凡 等. 稳定与多变—α-氧化铝: 从性质、合成到应用 [J]. 中国陶瓷工业, 2022, 29(5): 30
27 Tan X Y, Wang X, Yin Y S, et al. Crystal structure and valence electron structure of α-Al2O3 [J]. Chin. J. Nonferrous Met., 2002, 12(suppl.1): 18
谭训彦, 王 昕, 尹衍升 等. α-Al2O3的晶体结构与价电子结构 [J]. 中国有色金属学报, 2002, 12(增刊1): 18
28 Tran Q P, Sun J K, Kuo Y C, et al. Anomalous layer-thickening during micro-arc oxidation of 6061 Al alloy [J]. J. Alloy Compd., 2017, 697: 326
29 Sun H O, Li L C, Wang Z Y, et al. Corrosion behaviors of microarc oxidation coating and anodic oxidation on 5083 aluminum alloy [J]. J. Chem., 2020, 2020: 6082812
30 Wang P, Wu T, Xiao Y T, et al. Characterization of micro-arc oxidation coatings on aluminum drillpipes at different current density [J]. Vacuum, 2017, 142: 21
31 Wang D D, Liu X T, Wang Y, et al. Role of the electrolyte composition in establishing plasma discharges and coating growth process during a micro-arc oxidation [J]. Surf. Coat. Technol., 2020, 402: 126349
32 Yeshmanova G, Blawert C, Serdechnova M, et al. Effect of electrolyte composition on the formation of PEO coatings on AA2024 aluminium alloy [J]. Surf. Interfaces, 2024, 44: 103797
33 Kang D D, Feng Y, Han L, et al. Microstructure analysis of α-Al2O3 prepared by aluminum hydroxide [J]. Refractories, 2022, 56(3): 218
康冬冬, 冯 雨, 韩 露 等. 氢氧化铝制备α-Al2O3微观结构分析 [J]. 耐火材料, 2022, 56(3): 218
doi: 10.3969/j.issn.1001-1935.2022.03.009
34 Monfort F, Berkani A, Matykina E, et al. Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte [J]. Corros. Sci., 2007, 49(2): 672
35 Guo H F, An M Z. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance [J]. Appl. Surf. Sci., 2005, 246(1-3): 229
36 Shen D J, Li G L, Guo C H, et al. Microstructure and corrosion behavior of micro-arc oxidation coating on 6061 aluminum alloy pre-treated by high-temperature oxidation [J]. Appl. Surf. Sci., 2013, 287: 451
[1] CHEN Zhenyong, WEI Xinxin, XU Yanting, ZHANG Bo, MA Xiuliang. Effect of Electrochemical Nitriding on the Surface Structure of Stainless Steel[J]. 材料研究学报, 2024, 38(3): 161-167.
[2] LU Yiliang, DU Yao, WANG Cheng, XIN Li, ZHU Shenglong, WANG Fuhui. Effect of Nano-Al2O3 and -TiO2 Modified Silicone Coatings on High Temperature Oxidation Resistance of 304 Stainless Steel[J]. 材料研究学报, 2021, 35(6): 458-466.
[3] Ningning CHEN, Yanhua WANG, Lian ZHONG, Peipei YANG, Jia WANG. Anticorrosion Performance of Super-Hydrophobic Complex Film of Graphene/stearic Acid on AZ91 Mg-alloy[J]. 材料研究学报, 2017, 31(10): 751-757.
[4] LI Yuhai, ZHANG Baibing, DONG Xuguang, WANG Shuai. Comparative Study on Corrosion Resistance of Micro Arc Oxidation Ceramic Coatings on Mg-Mn-RE Alloy[J]. 材料研究学报, 2016, 30(3): 235-240.
[5] Yuhai LI,Shisong LU,Hui ZHAO,Yan ZHAO. Optimization of Preparation Technology of Micro-arc Oxidation Coatings on Pure Titanium[J]. 材料研究学报, 2014, 28(3): 233-240.
[6] ZHAO Xiaoyun, WANG Xinhua. Bioactivity Study of Barium Titanate Films Prepared by Micro-arc Oxidation[J]. 材料研究学报, 2013, 27(5): 549-555.
[7] LIU Zhongde** LUO Rui CHENG Xiaonong ZHOU Xinghua
ZHANG Yingtao YAN Feixiang. Investigation on Biocompatibility of Micro-arc#br#Oxidation Ti6Al4V Alloy[J]. 材料研究学报, 2013, 27(4): 355-359.
[8] MA Ying ZHANG Hongfeng HAO Yuan CHEN Tijun LI Yuandong CAO Wei. Interaction of heat-treatment and micro-arc oxidation on AZ91D magnesium alloys[J]. 材料研究学报, 2009, 23(6): 656-662.
[9] CUI Zhuoxing SHAO Zhongcai LIU Zhiyuan ZHAO Lixin TIAN Yanwen. Effects of additives on properties of ceramic coatings formed by micro-arc oxidation on AZ91D Mg alloy[J]. 材料研究学报, 2009, 23(2): 193-198.
[10] WANG Yinshu; LI Jinmin; LIN Lanying (Institute of Semiconductors; The Chincse Academy of Sciences; Beijing 100083). THE PROGRESS OF SiC SINGLE CRYSTAL GROWTH AND ITS DEVICES[J]. 材料研究学报, 1998, 12(3): 233-238.
[11] YANG Chunsheng;ZHOU Di;QI Zhenzhong;ZHANG Shoubo;CAI Bingchu(Shanghai Jiaotong University). THE INITIAL STAGE OF ION BEAM DEPOSITING Ti AND Ni FILM GROWTH[J]. 材料研究学报, 1996, 10(5): 494-496.
No Suggested Reading articles found!