Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (12): 942-948    DOI: 10.11901/1005.3093.2019.159
ARTICLES Current Issue | Archive | Adv Search |
High Temperature Oxidation and Electrochemical Corrosion Behavior of Al Nano-particle Modified Silicone Coating on 304 Stainless Steel
Yao DU1,2,Cheng WANG1(),Shenglong ZHU1,3,Fuhui WANG3,4
1. Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3. Shenyang National Laboratory for Materials Science, Shenyang 110016, China
4. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

Yao DU,Cheng WANG,Shenglong ZHU,Fuhui WANG. High Temperature Oxidation and Electrochemical Corrosion Behavior of Al Nano-particle Modified Silicone Coating on 304 Stainless Steel. Chinese Journal of Materials Research, 2019, 33(12): 942-948.

Download:  HTML  PDF(4358KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Al nano-particle modified organosilicone coatings were prepared on stainless steel 304SS. The curing properties at room temperatures, high temperature oxidation behavior at 650oC in air and electrochemical corrosion behavior in 3.5% NaCl solution of the coatings were investigated. The silicone coatings can be cured at room temperatures in 24 h only when the mass ratio of polyurethane over silicone is equal to or higher than 1:3. The as-prepared silicone coatings were smooth and free of cracks. The high temperature oxidation resistance of 304SS was greatly improved by applying the modified silicone coating. After oxidized for 1028 h at 650oC in air, the oxide scale on the coated 304SS was hardly discernable, while the coatings remained intact and free of cracks. Besides, after high temperature oxidation, the electrochemical corrosion resistance of the 304SS coated with modified silicone coating in NaCl solution was greatly improved, too. Without the protection of the coating, the impedance at low frequency of oxidized 304SS without coating was as low as 3.2 Ω·cm2, while that of the sample with coating was as high as 1.1×105 Ω·cm2.

Key words:  failure and protection of materials      anti-high temperature oxidation      nano-modification      organosilion      normal temperature curing      304 stainless steel     
Received:  18 March 2019     
ZTFLH:  TG 174  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.159     OR     https://www.cjmr.org/EN/Y2019/V33/I12/942

Mass percent of polyurethane0101520253035
Curing property-not curednot curedpartially curedcuredcuredcured
Table 1  Curing property of organosilion resin
Fig.1  FTIR spectra of organosilion resin (a), polyurethane resin (b) and cured coatings (c)
Fig.2  Oxidation dynamic curves of 304SS at 650℃ in open air
Fig.3  Mott-Schottky curves of 304SS
Fig.4  EIS of 304SS after oxidation (a) Nyquist plots, (b) Bode-module plots and (c) Bode-phase angle
Fig.5  SEM morphologies of pristine (a), after oxidation (b, c) of coatings and 304SS after oxidation (d, e) and (f) compositions
ElementAtomic percentage
O62.38
Al9.71
Si9.42
Ti3.62
Cr9.99
Cu4.88
Table 2  Atomic weight percentage of 304SS coating after oxided
Fig.6  XRD of pristine and oxidized coatings
[1] Brooks A R. On the role of Cr in the passivity of stainless steel [J]. Journal of the Electrochemical Society, 1986, 133(12): 2459
[2] Wang B C, Zhu J H. Semiconducting behaviors of passive films of stainless steel under ultrasonic cavitation [J]. Acta Metallurgica Sinica, 2007, 43(8): 813
[2] (王保成, 朱金华. 超声空化下不锈钢钝化膜的半导体行为, 金属学报, 2007, 43(8): 813)
[3] Tranchida G, Clesi M, Franco F D, et al. Santamaria electronic properties and corrosion resistance of passive films on austenitic and duplex stainless steels [J]. Electrochimica Acta, 2018, 273: 412
[4] Ferreira M G S, Hakiki N E, Goodlet G, et al. Influence of the temperature of film formation on the electronic structure of oxide films formed on 304 stainless steel [J]. Electrochimica Acta, 2001, 46(24): 3767
[5] Hakiki N E. Structural and photoelectrochemical characterization of oxide films formed on AISI 304 stainless steel [J]. Journal of Applied Electrochemistry, 2010, 40(2): 357
[6] Teng K P, Shao H H. Preparation and properties of Ni-nano Al2O3 composite plating on 304 stainless steel [J]. Corrosion Science and Protection Technology, 2012, 24(1): 46
[6] (滕昆鹏, 邵红红. 304不锈钢表面Ni-Al2O3复合镀层制备及性能研究 [J]. 腐蚀科学与防护技术, 2012, 24(1): 46)
[7] Mitra S K, Roy S K, Bose S K. Influence of superficial coating of CeO2 on the oxidation behavior of AISI 304 stainless steel[J]. Oxidation of Metals, 1993, 39(3-4): 221
[8] Peng J G, Luo S Z, Yuan M. Research on oxidation behavior of 304 austenitic stainless steel at high temperature [J]. Baosteel Technology, 2007, 25(4): 29
[8] (彭建国, 骆素珍, 袁 敏. 304奥氏体不锈钢高温氧化行为研究 [J]. 宝钢技术, 2007, 25(4): 29)
[9] Jovanovic J D, Govedarica M N, Dvornic P R, et al. The Thermogravimetric analysis of some polysiloxanes [J]. Polymer Degradation and Stability, 1998, 61(1): 87
[10] Zhou N L. Introduction to Silicone Polymers [M]. Beijing: Science Press, 2000
[10] (周宁琳. 有机硅聚合物导论 [M]. 北京: 科学出版社, 2000)
[11] Jia M, Wu C, Li W, et al. Synthesis and characterization of a silicone resin with silphenylene units in Si-O-Si backbones [J]. Journal of Applied Polymer Science, 2009, 114(2): 971
[12] Sun J T, Huang Y D, Cao H L, et al. Synthesis of heat-resistant silicone resin and studies on its thermal and curing properties [J]. 2005, 25(1): 25
[12] (孙举涛, 黄玉东, 曹海琳等. 耐高温有机硅树脂的合成及其耐热和固化性能研究. 航空材料学报 [J], 2005, 25(1): 25)
[13] Kuo C F J, Chen J B. Study on the synthesis and application of silicone resin containing phenyl group [J]. Journal of Sol-Gel Science and Technology, 2015, 76(1): 66
[14] Min C Y, Huang Y D, Liu L. Effect of nanosized ferric oxide on the thermostability of methylsilicone resin [J]. Journal of Materials Science, 2007, 42(20): 8695
[15] Sim L C, Ramanan S R, Ismail H, et al. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes [J]. Thermochimica Acta, 2005, 430(1): 155
[16] Wang C, Jiang F, Wang F. Corrosion inhibition of 304 stainless steel by nano-sized Ti/silicone coatings in an environment containing NaCl and water vapor at 400~600℃ [J]. Oxidation of Metals, 2004, 62(1-2): 1
[17] Wei Q, Pippel E, Woltersdorf J, et al. Interfacial SiC formation in polysiloxane-derived Si-O-C ceramics [J]. Materials Chemistry & Physics, 2002, 73(2): 281
[18] Liu W C, Yu Y Y, Chen W C. Structural control and properties of low-dielectric-constant poly(hydrogen silsesquioxane) precursors and their thin films [J]. Journal of Applied Polymer Science, 2004, 91(4): 2653
[19] Kuo C F J, Chen J B. Study on the synthesis and application of silicone resin containing phenyl group [J]. Journal of Sol-Gel Science and Technology, 2015, 76(1): 66
[20] Huang W R. Development of silicone material market and product (continued sixteen) [J]. Silicone Material and Application, 1998, 12(1): 8
[20] (黄文润. 有机硅材料的市场与产品开发(续十六) [J]. 有机硅材料及应用, 1998, 12(1): 8)
[21] Asteman H, Svensson J E, Johansson L G, et al. Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor [J]. Oxidation of Metals, 1999, 52(1-2): 95
[22] Wang Z W, Gong X T, Xie X. High temperature oxidation behavior of pure Cr at 650℃ [J]. Heat Treatment of Metals, 2017, 42(3): 93
[22] (王志武, 龚雪婷, 谢 兴. 纯铬的650℃高温氧化行为 [J]. 金属热处理, 2017, 42(3): 93)
[23] Min C Y, Huang Y D, Song H J, et al. Synthesis of high-temperature resistance hybrid silicon resin and evaluation of its composite material’s high-temperature mechanical property [J]. Journal of Solid Rocket Technology, 2011, 34(4): 520
[23] (闵春英, 黄玉东, 宋浩杰等. 耐高温杂化有机硅树脂的合成及复合材料的高温力学性能 [J]. 固体火箭技术, 2011, 34(4): 520)
[24] You S H, Qi S C, Li Y F, et al. High temperature bonding performance and mechanism of silicone adhesive modified by inorganic filler [J]. Journal of the Chinese Ceramic Society, 2014, 42(1): 70
[24] (游世海, 齐士成, 李友芬, 等. 无机填料改性有机硅胶黏剂高温黏结性能及机理分析 [J]. 硅酸盐学报, 2014, 42(1): 70)
[25] Feng Z, Cheng X, Dong C, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corrosion Science, 2010, 52(11): 3646
[26] Azumi, Kazuhisa. Mott-Schottky plot of the passive film formed on iron in neutral borate and phosphate solutions [J]. Journal of the Electrochemical Society, 1987, 134(6): 1352
[27] Tsuchiya H, Fujimoto S, Chihara O, et al. Semiconductive behavior of passive films formed on pure Cr and Fe-Cr alloys in sulfuric acid solution [J]. Electrochimica Acta, 2003, 47(27): 4357
[28] Morshed-Behbahani K, Najafisayar P, Pakshir M, et al. An electrochemical study on the effect of stabilization and sensitization heat treatments on the intergranular corrosion behaviour of AISI 321H austenitic stainless steel [J]. Corrosion Science, 2018, 138(1): 28
[29] Tian W, Meng F, Liu L, et al. Lifetime prediction for organic coating under alternating hydrostatic pressure by artificial neural network [J]. Scientific Reports, 2017, 7: 40827
[30] Zhou Q, Wang Y. Comparisons of clear coating degradation in NaCl solution and pure water [J]. Progress in Organic Coatings, 2013, 76(11): 1674
[31] Li M, Zhao F Q, Luo Y, et al. Effect of aluminum nanopowders and aluminum micropowders on energetic characteristics of HTPB propellant [J]. Rare Metal Materials and Engineering, 2015, 44(12): 3060
[31] (李 猛, 赵凤起, 罗 阳等. 纳米铝粉与微米铝粉对复合推进剂能量特性的影响 [J]. 稀有金属材料与工程, 2015, 44(12): 3060)
[32] Chen L, SO W L, LV J, et al. Effect of heating rates on TG-DTA results of aluminum nanopowders prepared by laser heating evaporation [J]. Journal of Thermal Analysis and Calorimetry, 2009, 96(1): 141
[33] He L R, Xiao L Q, Jian X X, et al. Investigation of alumina shell impact on nano-aluminum thermal reaction [J]. Journal of Solid Rocket Technology, 2012, 35(3): 382
[33] (何丽蓉, 肖乐勤, 菅晓霞等. 氧化铝壳层对纳米铝粉的热反应特性影响研究 [J]. 固体火箭技术, 2012, 35(3): 382)
[34] Lu H X, Zeng S H, Hou T C, et al. Thermal reaction properties of nanometer aluminium powders [J]. Journal of Synthetic Crystals, 2007, 36(3): 638
[34] (卢红霞, 曾昭桓, 侯铁翠等. 纳米Al粉热反应特性的研究 [J]. 人工晶体学报, 2007, 36(3): 638)
[35] Li T F. High Temperature Oxidation and Hot Corrosion of Metals [M]. Beijing: Chemistry Industry Press, 2003
[35] (李铁藩. 金属高温氧化和热腐蚀 [M]. 北京:化学工业出版社, 2003)
[1] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[2] CHEN Zheng, YANG Fang, WANG Cheng, DU Yao, LU Yiliang, ZHU Shenglong, WANG Fuhui. Effect of Inorganic Fillers on High Temperature Oxidation Resistance of Nano-Al/Al2O3 Modified Organic Silicone Coatings[J]. 材料研究学报, 2022, 36(4): 271-277.
[3] LU Yiliang, DU Yao, WANG Cheng, XIN Li, ZHU Shenglong, WANG Fuhui. Effect of Nano-Al2O3 and -TiO2 Modified Silicone Coatings on High Temperature Oxidation Resistance of 304 Stainless Steel[J]. 材料研究学报, 2021, 35(6): 458-466.
[4] Xin GUO,Peiqing LA,Heng LI,Xuefeng LU,Yupeng WEI. Properties of Warm-rolled High Al Containing 304 Austenite Stainless Steel[J]. 材料研究学报, 2017, 31(3): 175-181.
[5] Xiaolu GUO,Huisheng SHI. Durability and Pore Structure of Nano-particle-modified Geopolymers of Waste Brick Powder-class C Fly Ash[J]. 材料研究学报, 2017, 31(2): 110-116.
[6] WU Congqian, REN Ruiming, LIU Pengtao, CHEN Chunhuan, ZHAO Xiujuan. Cavitation Erosion of 304 Stainless Steel induced by Caviting Water Jet[J]. 材料研究学报, 2016, 30(6): 473-480.
No Suggested Reading articles found!