Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (4): 241-253    DOI: 10.11901/1005.3093.2018.514
Current Issue | Archive | Adv Search |
CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy
Xuexiong LI1,2,Dongsheng XU1(),Rui YANG1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article: 

Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy. Chinese Journal of Materials Research, 2019, 33(4): 241-253.

Download:  HTML  PDF(19804KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Duplex microstructure models containing multi-variants in each β transformed (βT) grains are established, and then, the high temperature tensile deformation of Ti-6Al-4V alloys with different microstructure features was investigated via the rate-dependent crystal plasticity finite element simulation by taking all slip systems in the α and β phases into consideration. The spatial distributions and time evolution of the stress and strain in various grains and phases are analyzed in detail, and a new method is proposed to evaluate quantitatively the deformation consistency. Simulation results showed that αp underwent higher strain distribution rather than βT, and inter-crossing high strain bands formed in the duplex microstructure and distributed symmetrically with respect to the tensile direction. The surrounding structure formed between αp and βT grains can enhance the differences in the local strain distribution. Increasing the volume fraction of αp may reduce the strain allocation in αp, the consistency coefficient of strain first decrease rapidly and then stabilized. As the thickness of αs increase, the feature of high strain bands weakened and the consistency coefficient of strain increased. The consistency coefficient of strain for βT containing double αs variants is usually lower than that with single or three αs variants.

Key words:  foundational discipline in materials science      deformation compatibility      CPFEM      titanium alloy      duplex microstructure      distributions of micro stress and strain     
Received:  20 August 2018     
ZTFLH:  TG113.25  
Fund: National Key Research and Development Program of China(2016YFB0701304);CAS Informatization Program(XXH13506-304)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.514     OR     https://www.cjmr.org/EN/Y2019/V33/I4/241

Fig.1  Duplex microstructure model
Table 1  Phase and slip systems for different titanium alloy’s phase
PhaseSlip systems typen

h0

/MPa

τ0

/MPa

τs

/MPa

α-Ti(HCP)<a>6.25120.08.218.0
<c+a>6.25120.082.0180.0
β-Ti(BCC)12.5143.184.396.5
Table 2  
Fig.2  Contour maps of Mises stress and true strain for duplex microstructures (40% αp, 750℃, 20% tension): (a1) (a2) (a3) mises stress, (b1) (b2) (b3) true strain, (a1) (b1) whole, (a2) (b2) αp+αs, (a3) (b3) β phase
Fig.3  Contour maps of average dislocation density and statistical true strain of each slip system for duplex microstructures (40% αp, 750℃, 20% tension): (a) average dislocation density, (b) sum true strain of each slip system
Fig.4  Frequency of Mises stress and true strain for duplex microstructures (40% αp, 750℃,20% tension) (a) Mises stress, (b) true strain
Fig.5  Contour maps of Mises stress and true strain for alloys different volume fraction of primary α phase(750℃, 20% tension) (a1, a2, a3) Mises stress, (b1, b2, b3) true strain, (a1, b1) 20%, (a2, b2) 40%, (a3, b3) 60%
Fig.6  Average Mises stress and true strain, consistency coefficients for duplex microstructures with different volume fraction of primary α (750℃, 20% tension) (a) average true strain, (b) true strain consistency, (c) average Mises stress, (d) Mises stress consistency
Fig.7  Contour maps of Mises stress and true strain for microstructures with different α lamella thickness (40% αp, 750℃, 20% tension) (a1, a2, a3) Mises stress, (b1, b2, b3) true strain, (a1, b1) 1.5 μm, (a2, b2) 2.0 μm, (a3, b3) 2.5 μm
Fig.8  Average Mises stress and true strain, consistency coefficients for duplex microstructures with different α lamella thickness (40% αp, 750℃, 20% tension) (a) average true strain, (b) true strain consistency, (c) average Mises stress, (d) Mises stress consistency
Fig.9  Contour maps of Mises stress and true strain in microstructures with different numbers of α lamella colony (40% αp, 750℃, 20% tension) (a1, a2, a3) Mises stress, (b1, b2, b3) true strain, (a1, b1) 1, (a2, b2) 2, (a3, b3) 3
Fig.10  Average true strain and Mises stress, consistency coefficients for microstructures with different numbers of α lamella colony (40% αp, 750℃, 20% tension) (a) average true strain, (b) true strain consistency, (c) average Mises stress, (d) Mises stress consistency
[1] LütjeringG, WilliamsJ C. Titanium, 2nd Ed [M]. New York: Springer, 2007
[2] ZhaoY Q, ChenY N, ZhangX M, et al. Phase Transformation and Heat treatment of Titanium Alloys [M]. Changsha: Central South University Press, 2012
[2] (赵永庆, 陈永楠, 张学敏等. 钛合金相变及热处理 [M]. 长沙: 中南大学出版社, 2012)
[3] MaY J, LiuJ R, LeiJ F, et al. The influence of multi heat-treatment on microstructure and mechanical properties of TC4 alloy [J]. Chinese Journal of Materials Research, 2008, 22(5): 555
[3] (马英杰, 刘建荣, 雷家峰等. 多重热处理对TC4合金的组织和力学性能的影响 [J]. 材料研究学报, 2008, 22(5): 555)
[4] WangX Y, LiuJ R, LeiJ F, et al. Effects of primary and secondary α phase on tensile property and fracture toughness of Ti-1023 alloy [J]. Acta Metall. Sin., 2007, 43(11): 1129
[4] (王晓燕, 刘建荣, 雷家峰等. 初生及次生α相对Ti-1023合金拉伸性能和断裂韧性的影响 [J]. 金属学报, 2007, 43(11): 1129)
[5] PengM Q, ChenX W, ZhengC, et al. Effects of secondary α phase width on dynamic mechanical properties and sensitivity of adiabatic shear banding in bimodal microstructures of TC4 alloy [J]. Rare Metal Mat. Eng., 2017, 46(7): 1843
[5] (彭美旗, 程兴旺, 郑 超等. 次生片层α相宽度对双态组织TC4 钛合金动态压缩性能及其绝热剪切敏感性的影响 [J]. 稀有金属材料与工程, 2017, 46(7): 1843)
[6] SongM, MaY J, WuJ, et al. Effect of cooling rate on microstructure and properties of Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.1Si [J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): 588
[6] (宋 淼, 马英杰, 邬 军等. 冷却速率对Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.15Si合金组织及性能的影响 [J]. 中国有色金属学报, 2010, 20(1): 588)
[7] ZangX L, ZhaoX Q, JoongkeunP, et al. Numerical simulation on distribution of micro stress-strain in dual-phase titanium alloys [J]. Rare Metal Mat. Eng., 2009, 38(6): 1058
[7] (臧新良, 赵希庆, Joongkeun P等. 双相钛合金微观应力-应变分布的数值模拟 [J]. 稀有金属材料与工程, 2009, 38(6): 1058)
[8] TangB, XieS, LiuY, et al. Crystal plasticity finite element study of incompatible deformation behavior in two phase microstructure in near beta titanium alloy [J]. Rare Metal Mat. Eng., 2015, 44(3): 532
[9] BrittonT B, LiangH, DunneF P E, et al. The effect of crystal orientation on the indentation response of commercially pure titanium: experiments and simulations [J]. Proc. R. Soc. A-Math. Phys. Eng. Sci., 2010, 466(2115): 695
[10] WilkinsonA J, ClarkeE E, BrittonT B, et al. High resolution electron backscatter diffraction: an emerging tool for studying local deformation [J]. J. Strain Anal. Eng. Des., 2010, 45(45): 365
[11] FanX G, YangH. Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution [J]. Int. J. Plast., 2011, 27(11): 1833
[12] KataniS, MadadiF, AtapourM, et al. Micromechanical modelling of damage behaviour of Ti-6Al-4V [J]. Mater. Des., 2013, 49: 1016
[13] NetiS, VijayshankarM N, AnkemS. Finite element method modeling of deformation behavior of two-phase materials part I: stress-strain relations [J]. Mater. Sci. Eng. A-Struct. Mater., 1991, 145(1): 47
[14] BridierF, McDowellD L, VillechaiseP, et al. Crystal plasticity modeling of slip activity in Ti-6Al-4V under high cycle fatigue loading [J]. Int. J. Plast., 2009, 25(6): 1066
[15] MaY J, LiJ W, LeiJ F, et al. Influences of microstructure on fatigue crack propagating path and crack growth rates in TC4ELI alloy [J]. Acta Metall. Sin., 2010, 46(9): 1086
[15] (马英杰, 李晋炜, 雷家峰等. 显微组织对TC4ELI合金疲劳裂纹扩展路径及扩展速率的影响 [J]. 金属学报, 2010, 46(9): 1086)
[16] MaY J, LiuJ R, LeiJ F, et al. Influence of fatigue crack tip plastic zone on crack propagation behavior in TC4ELI alloy [J]. Acta Metall. Sin., 2009, 19(10): 1789
[16] (马英杰, 刘建荣, 雷家峰等. TC4ELI合金疲劳裂纹尖端塑性区对裂纹扩展的影响 [J]. 中国有色金属学报, 2009, 19(10): 1789)
[17] HanF B. CPFEM study of nonindentation and high cycle fatigue behavior for Ti-6Al-4V alloy [D]. Xi’an: Northwestern Polytechnical University, 2009
[17] (韩逢博. Ti-6Al-4V合金纳米压痕变形与高周疲劳行为CPFEM研究 [D]. 西安: 西北工业大学, 2016)
[18] KuangS, KangY L, YuH, et al. Stress-strain partitioning analysis of constituent phases in dual phase steel based on the modified law of mixture [J]. Int. J. Miner. Metall. Mater., 2009, 16(4): 393
[19] HuangB Y, LiC G, ShiL K, et al. China Materials Engineering Canon, Vol.04, Non-Ferrous Metal Materials and Engineering [M]. Beijing: Chemical Industries Press, 1994
[19] (黄伯云, 李成功, 石开力等. 材料工程大典,第4卷,有色金属材料工程(上) [M]. 北京: 化学工业出版社, 1994)
[20] AsaroR J, NeedlemanA. Overview no. 42 texture development and strain-hardening in rate dependent polycrystals [J]. Acta Metallurgica, 1985, 33(6): 923
[21] HillR. Generalized constitutive relations for incremental deformation of metal crystals by multi-slip [J]. J. Mech. Phys. Solids., 1966, 14(2): 95
[22] HillR, RiceJ R. Constitutive analysis of elastic-plastic crystals at arbitrary strain [J]. J. Mech. Phys. Solids., 1972, 20(6): 401
[23] PeirceD, AsaroR J, NeedlemanA. An analysis of nonuniform and localized deformation in ductile single-crystals [J]. Acta Metallurgica, 1982, 30(6): 1087
[24] ProustG, TomeC N, KaschnerG C. Modeling texture, twinning and hardening evolution during deformation of hexagonal materials [J]. Acta Mater., 2007, 55(6): 2137
[25] TomeC, KaschnerG C. Modeling texture, twinning and hardening evolution during deformation of hexagonal materials [J]. Materials Science Forum, 2005, 495: 1001
[26] KalidindiS R. Incorporation of deformation twinning in crystal plasticity models [J]. J. Mech. Phys. Solids., 1998, 46(2): 267
[27] DunneF P E, RuggD. On the mechanisms of fatigue facet nucleation in titanium alloys [J]. Fatigue Fract. Eng. Mater. Struct., 2008, 31(11): 949
[28] McDowellD L, DunneF P E. Microstructure-sensitive computational modeling of fatigue crack formation [J]. Int. J. Fatigue., 2010, 32(9): 1521
[29] JiaN, RotersF, EisenlohrP, et al. Non-crystallographic shear banding in crystal plasticity FEM simulations: Example of texture evolution in alpha-brass [J]. Acta Mater., 2012, 60(3): 1099
[30] JiaN, RaabeD, ZhaoX. Texture and microstructure evolution during non-crystallographic shear banding in a plane strain compressed Cu-Ag metal matrix composite [J]. Acta Mater., 2014, 76: 238
[31] HutchinsonJ W. Bounds and self-consistent estimates for creep of polycrystalline materials [J]. Proc. R.Soc. London Ser. A-Math. Phys. Eng. Sci., 1976, 348(1652): 101
[32] BassaniJ L, WuT Y. Latent hardening in single crystals II analytical characterization and predictions [J]. Proc. R. Soc. A-Math. Phys. Eng. Sci., 1991, 435(1893): 21
[33] PeirceD, AsaroR J, NeedlemanA. Material rate dependence and localized deformation in crystalline solids [J]. Acta Metallurgica, 1983, 31(12): 1951
[34] TamuraI, TomotaY, YamaokaY, et al. The Strength and ductility of two-phase iron alloys [J]. Tetsu To Hagane-J. Iron Steel Inst. Jpn., 1973, 59(3): 454
[35] BalasubramanianS, AnandL. Plasticity of initially textured hexagonal polycrystals at high homologous temperatures: application to titanium [J]. Acta Mater., 2002, 50(1): 133
[36] SimmonsG, WangH. Single Crystal Elastic Constants and Calculated Aggregate Properties [M]. Cambridge: The MIT Press, 1997
[37] OgiH, KaiS, LedbetterH, et al. Titanium's high-temperature elastic constants through the hcp-bcc phase transformation [J]. Acta Mater., 2004, 52(7): 2075
[38] DuanY P, Mesoscopic research and simulation on hot deformation microstructure in TB8 alloy [D]. Hefei: Hefei University of Technology, 2009
[38] (段园培. TB8合金热变形组织介观尺度研究与模拟 [D]. 合肥: 合肥工业大学, 2009)
[39] ZherebtsovS, MurzinovaM, SalishchevG, et al. Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing [J]. Acta Mater., 2011, 59(10): 4138
[40] PatonN E, BackofenW A. Plastic deformation of Titanium at elevated temperatures [J]. Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 1970, 1(10): 2839
[41] GuanJ, LiuJ R, LeiJ F, et al. The relationship of heat treatment-microstructures-mechanical properties of the TC18 titanium alloy [J]. Chinese Journal of Materials Research, 2009, 23(1): 77
[41] (官 杰, 刘建荣, 雷家峰等. TC18钛合金的组织和性能与热处理制度的关系 [J]. 材料研究学报, 2009, 23(1): 77)
[42] YangM, WangG, TengC Y, et al. 3D phase field simulation of effect of interfacial energy anisotropy on sideplate growth in Ti-6Al-4V [J]. Acta Metall. Sin., 2012, 48(2): 148
[42] (杨 梅, 王 刚, 滕春禹等. Ti-6Al-4V中界面能对α相片层生长的影响三维相场模拟 [J]. 金属学报, 2012, 48(2): 148)
[43] ZhangJ H, XuD S, WangY Z, et al. Influences of dislocations on nucleation and micro-texture formation of α phase in Ti-6Al-4V alloy [J]. Acta Metall. Sin., 2016, 52(8): 905
[43] (张金虎, 徐东生, 王云志等. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响 [J]. 金属学报, 2016, 52(8): 905)
[44] ShiR, WangY. Variant selection during α precipitation in Ti-6Al-4V under the influence of local stress-A simulation study [J]. Acta Mater., 2013, 61(16): 6006
[45] BurgersW G. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium [J]. Physica, 1934, 1(7): 561
[46] WangS C, AindowM, StarinkM J. Effect of self-accommodation on α/α boundary populations in pure titanium [J]. Acta Mater., 2003, 51(9): 2485
[47] KehagiasT, KomninouP, DimitrakopulosG P, et al. Slip transfer across low-angle grain boundaries of deformed titanium [J]. Scripta Metal Mater., 1995, 33(12): 1883
[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[4] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[5] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[6] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[7] WANG Wei, ZHOU Shanqi, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Kuaishe. Effect of Anneal Treatment on Microstructure, Texture and Mechanical Properties of TC4 Alloy Plates[J]. 材料研究学报, 2023, 37(1): 70-80.
[8] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[9] CAI Yusheng, HAN Hongzhi, REN Dechun, JI Haibin, LEI Jiafeng. Effect of Chemical Etching Process on Surface Roughness of TC4 Ti-alloy Fabricated by Laser Selective Melting[J]. 材料研究学报, 2022, 36(6): 435-442.
[10] WANG Jun, WANG Kelu, LU Shiqiang, LI Xin, OUYANG Delai, QIU Qian, GAO Xin, ZHANG Kaiming. Strain Compensation Physical Constitutive Model and Processing Map of TA5 Titanium Alloy[J]. 材料研究学报, 2022, 36(3): 175-182.
[11] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[12] LIU Zhiduo, ZHANG Haoyu, CHENG Jun, ZHOU Ge, ZHANG Xingjun, CHEN Lijia. Effect of Heat Treatment on Tensile Property of Ti-6Mo-5V-3Al-2Fe-2Zr Alloy[J]. 材料研究学报, 2022, 36(12): 919-925.
[13] WANG Shengyuan, ZHANG Haoyu, ZHOU Ge, CHEN Xiaobo, CHEN Lijia. Effect of Solution Treatment Temperature on Microstructure and Tensile Properties of Ti-4Al-6Mo-2V-5Cr-2Zr Alloy[J]. 材料研究学报, 2022, 36(12): 893-899.
[14] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[15] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
No Suggested Reading articles found!