Please wait a minute...
Chin J Mater Res  2012, Vol. 26 Issue (4): 355-360    DOI:
论文 Current Issue | Archive | Adv Search |
Proton Exchange Properties of PVDF/PSSA Composite Membranes for High Temperature
MA Ning, CAI Fangchang, YIN Hao, ZHANG Hongxing, JIANG Tao
Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062
Cite this article: 

MA Ning CAI Fangchang YIN Hao ZHANG Hongxing JIANG Tao. Proton Exchange Properties of PVDF/PSSA Composite Membranes for High Temperature. Chin J Mater Res, 2012, 26(4): 355-360.

Download:  PDF(989KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Poly (styrenesuflonic) acid (PSSA) and poly (vinylidene fluoride) (PVDF) composite membranes have been prepared by free radical polymerization. By reading the relationship of the reaction–time and the characteristics of microstructural, electrochemistry and physical properties of PVDF/PSSA Composite Membranes by SEM, EDX, EIS and TG, it is found that both the water content of PVDF/PSSA membrane and proton conductivity did increase if the hot–pressing time was extended. When the hot–pressing reactive time approached the optimum values at 8 hour, the water content reached 4.4% at the room temperature, the proton conductivity reached the maximum (0.375 S/cm) and the resisting strength reached to 32.1 MPa, which shows that the conductivity of the SIPN composite membrane can be improved clearly while holding the better mechanical and thermo property by free radical polymerization.
Key words:  PVDF      Poly(styrenesuflonic) acid      composite membrane      SIPN     
Received:  09 January 2012     
ZTFLH: 

O646

 
Fund: 

Supported by the National High Technology Research and Development Program of China (863 Program) No.2009AA034400.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I4/355

1 YI Baolian, Fuel Cells–Principle Technology Application (Beijing, Chemical Industry Press, 2003) p.351

(衣宝廉,  燃料电池--原理•技术•应用  (北京, 化学工业出版社, 2003) p.351)

2 S.J.C.Cleghorn, X.Ren, T.E.Springer, M.S.Wilson, C.Zawodzinski, T.A.Zawodzinski, S.Gottesfeld, PEM Fuel Cells for Transportation and Stationary Power Generation Applications, Journal of Hydrogen Energy, 22, 1137(1997)

3 W.G.Grot, Perfluorinated ion exchange polymers and their use in research and industry, Macromol. Symp., 82(1), 161(1994)

4 MAO Zongqiang, XIE Xiaofeng, LU Tianhong, Fuel Cells (Beijing, ChemicalIndustry Press, 2005) p.2

(毛宗强, 谢晓峰, 陆天虹, 燃料电池 (北京, 化学工业出版社, 2005) p.2)

5 REN Suzhen, SUN Gongquan, WU Zhimou, LI Chennan, JIN Wei, XIN Qin, YANG xuefeng, Blend membranes of sulfonated polyether ether, ketone/polyvinylidene fluoride, Chinese Journal of Power Sources, 30(3), 200(2006)

(任素贞, 孙公权, 吴智谋, 李辰楠, 金 巍, 辛 勤, 杨学锋, 化聚醚醚酮/聚偏氟乙烯共混膜的研究, 电源技术,  30(3), 200(2006))

6 S.M.Zaidi, S.D.Mikhailenko, G.P.Robertson, Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, Journal of Membrane Science, 173(1), 17(2000)

7 ZHANG Yaoxia, ZHU Xiuling, JIAN Xigao, Preparation of sulfonated poly(phthalazinone ether ketone ketone) and properties of the composite membranes SPPEKK/BPO4, Chinese Journal of Materials Research, 23(2), 215(2009)

(张耀霞, 朱秀玲, 蹇锡高, 磺化聚芳醚酮酮的制备及磷酸硼复合膜的性能, 材料研究学报,  23(2), 215(2009))

8 Y.M.Shang, X.F.Xie, H.Jin, J.W.Guo, Y.W.Wang, S.G.Feng, S.B.Wang, J.M.Xue, Synthesis and characterization of novel sulfonated naphthalenic polyimides as proton conductive membrane for DMFC applications, European Polymer Journal, 42(11), 2987(2006)

9 L.H.Sperling, Interpenetrating polymer networks and related

materials (New York, Plenum Press, 1981) p.2

10 A.D.Jenkins, P.Kratochvfl, R.F.T.Stepto, U.W.Suter, Glossary of basic terms in polymer science, Pure and Applied Chemistry, 68(12), 2287(1996)

11 J.R.Millar, Interpenetrating polym er netw orks styrene–divinyl benzene copolymers with two and three interpenetratingnetworks and their sulphonates, Journal of the Chemical Society, 236, 1311(1960)

12 HE Chunqing, ZHANG Shaoping, WANG Shaojie,WANG Guiyou, HU Chunpu, Free volume properties of interpenetrating polymer networks probed by positron annihilation, Wuhan university journal: neo–confucianism version, 46(1), 63(2000)

(何春清, 戴益群, 张少平, 王少阶, 王贵友, 胡春圃, 穿网络聚合物的自由体积特性, 武汉大学学报: 理学版, 46(1), 63(2000))
[1] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[2] CHEN Lin, HUANG Jiao, YAN Lei, GUO Yi, LIN Hong, LIN Hailan, BIAN Jun. Preparation and Properties of PVDF Based Dielectric Nanocomposites Containing Multi-scale Functional Fillers[J]. 材料研究学报, 2020, 34(11): 835-844.
[3] CHEN Bin, ZHANG Jialu, ZHANG Yan, ZHAO Haichao, ZHU Lijing. Carbon Dots Incorporated Polysulfone Nanocomposite Membranes with High Water Fux and Fouling Resistance[J]. 材料研究学报, 2020, 34(10): 761-769.
[4] Shui XU, Yan ZHANG, Baodong GAO, Zhao ZHAO, Guotao CHENG, Yong ZHU. Preparation and Properties of Composite Films of Silk Fibroin/Carboxymethyl Chitosan[J]. 材料研究学报, 2017, 31(8): 612-618.
[5] YOU Yuting WANG Yang ZHANG Xia. Synthesis and Properties of TiO2/PVDF Hybrid Membrane[J]. 材料研究学报, 2012, 26(3): 247-254.
[6] YE Yun GUO Tailiang JIANG Yadong LI Weizhi. The Component and Structure of Thermally Poled and Corona Charged PVDF Films[J]. 材料研究学报, 2011, 25(4): 403-407.
No Suggested Reading articles found!