Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (3): 245-253    DOI:
论文 Current Issue | Archive | Adv Search |
Effect of $\beta$ Phase on the Initial Atmospheric Corrosion Behaviour of the Magnesium-Aluminum Alloys by  n-situ
Electrochemical Impendence Spectra
JIA Ruiling2, ZHAI Xiwei2,  YAN Chuanwei1,  WANG Fuhui1
1.State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2.Key Laboratory for Superlight Materials of Inner Mongolia, Inner Mongolia University of Technology, Huhhot 010051
Cite this article: 

JIA Ruiling ZHAI Xiwei YAN Chuanwei WANG Fuhui. Effect of $\beta$ Phase on the Initial Atmospheric Corrosion Behaviour of the Magnesium-Aluminum Alloys by  n-situ
Electrochemical Impendence Spectra. Chin J Mater Res, 2010, 24(3): 245-253.

Download:  PDF(1925KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The in-situ electrochemical impedance spectrum measurements were conducted to investigate the early stage of the atmospheric corrosion behavior of the magnesium alloys with different volume fractions of β phase. The results indicated that β phase played a key role in the course of atmospheric corrosion of the magnesium alloys that was induced by NaCl particles centralized in the early time period. During the early ten hours the magnesium alloys with high volume fraction β phase had a bigger chargetransfer resistance, showing a better corrosion resistance. This phenomenon could be attributed to the better corrosion resistance of β phase. However, a faster corrosion occurred for the magnesium alloys with high volume fraction β after ten hours when the β phases were broken and the charge-transfer resistance dropped dramatically due to the high concentration of Cl−. As the exposure time prolonged, the protective function of the corrosion product films in Mg–3Al alloy was significantly better than those in the other two alloys as they helped slow down the corrosion rate of magnesium alloys with less volume fraction β phase.

Key words:  magnesium-aluminum alloy      β phase      atmospheric corrosion      Electrochemical Impendence Spectra     
Received:  27 November 2009     
ZTFLH: 

TG172

 
Fund: 

Supported by National Natural Science Foundation of China No.50571105.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I3/245

1 WANG Jun, HAN Wei, LI Hongxi, WANG Zhenyao, Review on electrochemical methods for atmospheric corrosion research, Corrosion Science and Protection Technology, 14(6), 334(2002)
(汪 俊, 韩 薇, 李洪锡, 王振尧,大气腐蚀电化学研究方法现状, 腐蚀科学与防护技术,  14(6), 334(2002))
2 K.Darowicki, Corrosion rate measurements by non-linear electrochemical impedance spectroscopy, Corrosion Science, 37(6), 913(1995)
3 K.Darowicki, S.Krakowiak, P.Slepski, Evaluation of pitting corrosion by means of dynamic electrochemical impedance spectroscopy, Electrochimica Acta, 49, 2909(2004)
4 S.Krakowiak, K.arowicki, P.Slepski, Impendance of metastable pitting corrosion, Journal of Electronalytical Chemistry, 33, 575(2005)
5 K.Darowicki, S.Krakowiak, P.Slepski, The time dependence of pit creation impedance spectra, Elecrochemistry Communications, 6, 860(2004)
6 D.Li, Y.Hu, B.L.Guo, Study on the evaluation of localized corrosion of 2024T3 aluminum alloy with EIS, Materials Science Engineering A, 280, 173(2000)
7 A.Nashikata, Y.Yamashita, H.Katayama, T.Tsuru, A.Usami, K.Tanabe, H.Mabuchi, An electrochemical impendence study on atmospheric corrosion of steels in a cycle wet-dry condition, Corrosion Science, 37(12), 2059(1995)
8 A.Nashikata, Y.Ichihara, T.Tsuru, An application of electrochemical impendence spectroscopy to atmospheric corrosion study, Corrosion Science, 37(6), 897(1995)
9 R.P.Vera Crue, A.Nashikata, T.Tsuru, AC impendence monitoring of pitting corrosion of stainless steel under a wet-dry cyclic condition in chloride-containing environment, Corrosion Science, 38, 1397(1996)
10 A.Nashikata, Y.Ichihara, T.Tsuru, Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer, Electrochimica Acta, 41, 1057(1996)
11 Y.L.Cheng, Z.Zhang, F.H.Cao, J.F.Li, J.Q.Zhang, J.M.Wang, C.C.Nan, A study of the corrosion of aluminum alloy 2024–T3 under thin electrolyte layers, Corrosion Science, 46, 1649(2004)
12 N.Pebere, C.Rriea, F.Dabosi, Investigation of magnesium corrosion in aerated sodium sulfate solution by Electrochemical Impendence Spectroscopy, Electrochimica Acta, 35, 555(1990)
13 S.K.Das, L.A.Davies, High performance aerospace alloys via rapid solidication processing, Materials Science Engineering, 10, 98(1998)
14 G.L.Song, A.Atrens, M.Dargusch, Influence of microstructure on the corrosion of diecast AZ91D, Corrosion Science, 41, 249(1999)
15 G.L.Song, A.Atrens, X.L.Wu, B.Zhang, Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride, Corrosion Science, 40(10), 1769(1998)
16 G.L.Song, A.Atrens, Corrosion mechanisms of magnesium alloys , Advanced Engineering Materials, 1(1), 11(1999)
17 CAO Chunan, ZHANG Jianqing, An Introduction to Electrochemical Impendence Spectroscopy, 1st edition (Beijing, Science Press, 2002)
(曹楚南, 张鉴清,  电化学阻抗谱导论, (北京, 科学出版社, 2002))
18 R.L.Jia, C.W.Yan, F.H.Wang, Inflence of Al content on the atmospheric corrosion behaviour of magnesiumaluminum alloys, Journal of Materials Science & technology, 25(2), 225(2009)
19 WAN Ye, Investigation of atmospheric corrosion of metal by different pollutants, PhD thesis, Insitute of Metal Research, Chinese Academy of Sciences, 2005
(万 晔, 污染因素对金属大气腐蚀的影响机理研究, 博士学位论文, 中国科学院金属研究所, 2005)
20 Z.Y.Chen, D.Persson, C.Leygraf, Initial NaCl-particle induced atmospheric corrosion of zinc-effect of CO2 and SO2, Corrosion Science, 50(1), 111(2008)

[1] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[2] Dan ZHANG,Zhenyao WANG. Corrosion Behavior of Zinc Exposed to Salt Lake Area for 48 Months[J]. 材料研究学报, 2019, 33(8): 603-613.
[3] Jin WANG, Qingdan HUANG, Jing LIU, Yaru ZHANG, Chuang QIAO, Long HAO, Junhua DONG, Wei KE. Accelerated Indoor Corrosion of Galvanized Steel in a Simulated Atmospheric Environment of Guangzhou Area[J]. 材料研究学报, 2018, 32(8): 631-640.
[4] Dalei ZHANG, Yuanyuan MIAO, He JING, Xiaohui DOU, Youhai JIN. Effect of Sulphite Deposits on Hydrogen Embrittlement Susceptivity of Hot-dip Galvanized Steel in Marine Atmospheric Environment[J]. 材料研究学报, 2018, 32(7): 533-540.
[5] Dan ZHANG, Zhenyao WANG, Yongzhang ZHOU, Yuwei LIU, Qi YIN, Gongwang CAO. Initial Corrosion Behavior of Galvanized Steel in Atmosphere by Qinghai Salt Lake[J]. 材料研究学报, 2018, 32(4): 255-262.
[6] Shasha WANG,Lang YANG,Yunhua HUANG,Kui XIAO,Xiaogang LI. Initial Corrosion Behavior in Different Atmospheric Environments of 6061Al Alloy Anodized in Boron-sulfuric Acid Solution[J]. 材料研究学报, 2017, 31(1): 49-56.
[7] Ran XU,Yanhua WANG,Jia WANG,Zaijian LIU,Yuan ZHANG. Influence of Spreadability of Seawater Droplet on Electrochemical Characteristics of Carbon Steel[J]. 材料研究学报, 2015, 29(2): 95-100.
[8] Zhang Dalei Yan LI. Hydrogen permeation of hot-dip galvanized steel exposed to simulated marine atmosphere[J]. 材料研究学报, 2009, 23(6): 592-597.
[9] JIANG Min;LI Juntao;HAO Shiming(Dept. Materials Science and Engineering; Northeastern University; Shenyang 110006 ). THE THERMODYNAMIC CALCULATION OF α/βPHASE EQUILIBRIUM IN Ti-Al-Nb SYSTEM[J]. 材料研究学报, 1998, 12(5): 477-481.
[10] HUANG Chunxiao;WU Weitao;SUN Cheng;GAO Gengyu;LUO Jixun;LIU Shourong(Institute of Corrosion and Protection of Metals;Academia sinica). ATMOSPHERIC CORROSION SURVEY OF A3 STEEL IN INDUSTRIAL CITIES IN LIAONING[J]. 材料研究学报, 1992, 6(4): 308-311.
[11] SUN Cheng;WU Weitao;HUANG Chunxiao;GAO Gengyu;LUO Jixun;LIU Shourong(Institute of Corrosion and Protection of Metals;Academia Sinica). ATMOSPHERIC CORROSION OF ZINC IN LIAONING RURAL AREA[J]. 材料研究学报, 1992, 6(4): 312-314.
No Suggested Reading articles found!