Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (3): 225-231    DOI:
论文 Current Issue | Archive | Adv Search |
Synthesis of CS--g--PDLLA Copolymer and {\it in-situ} Fabrication of CS--g--PDLLA/PDLLA Porous Scaffolds in Supercritical  Carbon Dioxide
LUO Binghong 1,2,   CHENG Song 1,  ZHONG Cuihong 1,  JIAO Yanpeng 1,2,  ZHOU Changren 1,2
1.Department of Materials Science and Engineering, Jinan University, Guangzhou 510632
2.Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632
Cite this article: 

LUO Binghong CHENG Song ZHONG Cuihong JIAO Yanpeng ZHOU Changren. Synthesis of CS--g--PDLLA Copolymer and {\it in-situ} Fabrication of CS--g--PDLLA/PDLLA Porous Scaffolds in Supercritical  Carbon Dioxide. Chin J Mater Res, 2010, 24(3): 225-231.

Download:  PDF(1301KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Poly(D,L-lactide) (PDLLA) and chitosan--graft--poly(D,L-lactide) (CS--g--PDLLA) copolymer were synthesized firstly in supercritical carbon dioxide (scCO2) using D,L-lactide and chitosan as raw materials and tin (II) 2--ethylhexanoate as catalyst. Then, CS--g--PDLLA/PDLLA porous scaffolds were prepared in-situ by scCO2 extraction/pore forming technologies. The structure and properties of the graft copolymers and the molecular weight of PDLLA were characterized. The porous structure morphology of the scaffolds was observed and the porosity of the scaffolds was measured. The results showed that PDLLA and CS--g--PDLLA were synthesised successfully in scCO2 fluid, and the structure of the graft copolymer, the molecular weight and yield of PDLLA can be adjusted by controlling the feeding ratio, reaction temperature and time. Uniformly distributed and highly interconnected pore structures with a unique long gully type microstructure were formed in the CS--g--PDLLA/PDLLA scaffolds, and the compatibility of CS--g--PDLLA with PDLLA was good. Moreover, the depressurization rate and temperature have effects on the structure morphology of the porous scaffolds.

Key words:  composites       supercritical carbon dioxide (scCO2)        chitosan       poly(D,L-lactide)       copolymerization       porous scaffolds       in situ fabrication     
Received:  01 February 2010     
ZTFLH: 

O636

 
Fund: 

 Supported by National Natural Science Foundation of China No.30500128, National Hi-Tech Research and Development Program of China No.2007AA091603, and Sci--Tech Innovation Foundation of the "211 Project" for Biomaterials and Tissue Engineering, Jinan University No.50621030.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I3/225

[1]J.E.Bergsma, F.R.Rozema, R.R.M.Bos, G.Boering, W.C.de Bruijn, A.J.Pennings, In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polylactide particles, Biomaterials, 16(4), 267(1995)
[2]V.Has?rc?, K.Lewandrowski, J.D.Gresser, D.L.Wise, D.J.Trantolo, Versatility of biodegradable biopolymers: degradability and an in vivo application, Journal of Biotechnology, 86(2), 135(2001)
[3]J.C.Middleton, A.J.Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials, 21(23), 2335(2000)
[4]N.V.Majeti, R.Kumar, A review of chitin and chitosan applications, Reactive and Functional Polymers, 46(1), 1(2000)
[5]S.E.Kim, J.H.Park, Y.W.Cho, H.Chung, S.Y.Jeong, E.B.Jee, Porous chitosan scaffold containing microspheres loaded with transforming growth factor–β1: Implications for cartilage tissue engineering, Journal of Controlled Release, 91(3), 365(2003)
[6]X.Qu, A.Wirsen, A.C.Albertsson, Synthesis and characterization of pH-sensitive hydrogels based on chitosan and D, L-Lactic acid, Journal of Applied Polymer Science, 74(13), 3193(1999)
[7]Y.Liu, F.Tian, K.A.Hu, Synthesis and characterization of a brush-like copolymer of polylactide grafted onto chitosan, Carbohydrate Research, 339(4), 845(2004)
[8]D.D.Hile, M.V.Pishko, Solvent-free protein encapsulation within biodegradable polymer foams, Drug Delivery, 11(4), 287(2004)
[9]G.E.Luckachan, C.K.S.Pillai, Chitosan/oligo L-lactide graft copolymers:Effect of hydrophobic side chains on the physico-chemical properties and biodegradability, Carbohydrate Polymers, 64(2), 254(2006)
[10]H.Feng, C.M.Dong, Synthesis and characterization of phthaloyl-chitosan-g-poly(L-lactide) using an organic catalyst, Carbohydrate Polymers, 70(3), 258(2007)
[11]Y.Wu, Y.L.Zheng, W.L.Yang, C.C.Wang, J.H.Hu, S.K.Fu, Synthesis and characterization of a novel amphiphilic chitosan-polylactide graft copolymer, Carbohydrate Polymers, 59(2), 165(2005)
[12]A.Galia, R.D.Gregorio, G.Spadaro, O.Scialdone, G.Filardo, Grafting of maleic anhydride onto isotactic polypropylene in the presence of supercritical carbon dioxide as a solvent and swelling fluid, Macromolecules, 37(12), 4580(2004)
[13]D.Bratton, M.Brown, S.M.Howdle, Suspension polymerization of L-Lactide in supercritical carbon dioxide in the presence of a triblock copolymer stabilizer, Macromolecules, 36(16), 5908(2003)
[14]LI Qianqian, LU Qiwen, LI Lihua, ZHOU Changren, A new preparition process of natural bone material and its characterization, Joural of Biomedical Engineering, 24(2), 332(2007)
[15](李茜茜, 卢绮雯, 李立华, 周长忍, 新型天然骨材料的制备方法及其表征, 生物医学工程学杂志, 24(2), 332(2007)
[16]ZHANG Run, DENG Zhengxing, LI Lihua, ZHOU Changren, Preparation of porous PLA scaffold materials by surperctitical CO2 fluid technique, Chinese Joural of Materials Reseach, 17(6), 665(2003)
[17](张润, 邓政兴, 李立华, 周长忍, 用超临界CO$_{2}$制备聚乳酸三维多孔支架材料, 材料研究学报, 17(6), 665(2003))

[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] HUANG Jian, LIN Chunxiang, CHEN Ruiying, XIONG Wanyong, WEN Xiaole, LUO Xin. Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties[J]. 材料研究学报, 2020, 34(9): 674-682.
No Suggested Reading articles found!