Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (11): 865-872    DOI: 10.11901/1005.3093.2014.300
Current Issue | Archive | Adv Search |
Preparation and Visible Light Photocatalytic Activties of Hollow Nanospheres of Ag+/Ag-TiO2
Liping SHI1,Chun LIU1,2,**(),Hengbo YIN2,Aili WANG2,Lijun WANG1
1. College of Chemistry and Biology, Beihua University, Jilin 132013
2. Faculty of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013
Cite this article: 

Liping SHI,Chun LIU,Hengbo YIN,Aili WANG,Lijun WANG. Preparation and Visible Light Photocatalytic Activties of Hollow Nanospheres of Ag+/Ag-TiO2. Chinese Journal of Materials Research, 2014, 28(11): 865-872.

Download:  HTML  PDF(4182KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hollow nanospheres of Ag+/Ag-TiO2 (Ag+/Ag-HTS) were synthesized by a two step process i.e. firstly Ag2S was deposited on the surface of TiO2/polystyrene composites and subsequently the decorated composites were calcinated in air. The results show that all of the Ag+/Ag-HTS have good visible light photocatalytic activities for the photodegradation of methyl orange. It possesses a high efficiency for photodegradation of methyl orange as the solutions with low concentration of methyl orange. The presence of Schottky barrier may facilitate the migration of vacancies to the surface of Ag+/Ag-HTS and thereby enhance its photocatalytic efficiency. Ag+ in the catalyst is helpful to scavenge photoelectrons to prevent the recombination of electrons and vacancies. The photocatalytic activity of the Ag+/Ag-HTS increases with the increase of the amount of deposited Ag2S in the first step of synthesis process. The degradation of methyl orange by Ag+/Ag-modified hollow titania nanosphere photocatalysts fitted the pseudo-first-order kinetics. When the mass ratio of Ag2S to TiO2 was 25%, the photodegradation efficiency for methyl orange was up to 70.6% under visible light irradiation for 2 h.

Key words:  composites      visible light photocatalysis      Schottky barrier      wet chemical deposition method      hollow titania nanosphere     
Received:  26 June 2014     
Fund: *Supported by Science and Technology Development Plan of Jilin Province No. 201105042, and The Twelfth Five Year Plan Projects of Jilin Province Education Department Nos. 2011140 & 2014187.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.300     OR     https://www.cjmr.org/EN/Y2014/V28/I11/865

Ag+/Ag-HTS A A g 2 S O 4 AAg 100× A A g 2 S O 4 / (AAg+ A A g 2 S O 4 )
2θ=31.104° 2θ=38.115°
10%-Ag2S 44 36 55.0
15%- Ag2S 79 47 62.7
20%- Ag2S 119 52 70.0
25%- Ag2S 95 62 60.5
Table 1  Relative amount of Ag2SO4 of various Ag+/Ag-HTS samples (mass fraction)
Ag+/Ag-HTS AA AR AB wA/% wR/% wB/%
2θ=25.28° 2θ=27.44° 2θ=30.8°
0%- Ag2S 207 7 8 86.4 3.3 10.3
10%-Ag2S 210 15 8 83.5 6.7 9.8
15%- Ag2S 195 11 9 83.0 5.3 11.8
20%- Ag2S 154 11 12 75.8 6.1 18.1
25%- Ag2S 96 13 14 62.5 9.5 28.0
Table 2  Weight ratios of TiO2 phases in Ag+/Ag-HTS samples
Fig.1  Powder XRD patterns of the as-prepared Ag+/Ag-HTS samples
Fig.2  SEM images of PSM, HTS, and Ag+/Ag-HTS samples, (a) PSM, (b) 0%Ag+/Ag-HTS, (c) 10%Ag+/Ag-HTS, (d) 15%Ag+/AG-HTS, (e) 20%Ag+/Ag-HTS, (f) 25%Ag+/Ag-HTS
Fig.3  Diffuse reflectance spectra of the as-prepared HTS and Ag+/Ag-HTS samples; Inset: plot of the square root of the modified Kubelka-Munck function vs. the energy of the exciting light (P25)
Fig.4  Plots of the square root of the modified Kubelka-Munck functions vs. the energy of the exciting light; Inset: plots of the diffuse reflectance spectra of the as-prepared HTS and Ag+/Ag-HTS samples
Fig.5  Photodegradation of MO (5-20 mg·L-1) in the presence of Ag+/Ag-HTS, HTS and P25 photocatalysts under visible light irradiation (Tungsten Lamp, 500 W)
Fig.6  Poltting of ln(c/c0) vs t under different initial MO concentrations
Fig.7  Schematic illustration of the photocatalytic reaction by Ag+/Ag-HTS catalyst under visible light
Photocatalyst kapp/min-1(R2)
c0:~20 mgL-1 c0:~15 mgL-1 c0:~10 mgL-1 c0:~5 mgL-1
HTS 0.00247(0.9776) 0.00301(0.9918) 0.00407(0.9993) 0.00659(0.9911)
10%Ag+/Ag-HTS 0.00138(0.9909) 0.00178(0.9913) 0.00323(0.9948) 0.00454(1.0000)
15%Ag+/Ag-HTS 0.00168(0.9996) 0.00241(0.9988) 0.00358((0.9958) 0.00604(0.9978)
20%Ag+/Ag-HTS 0.00195(0.9956) 0.00249(0.9938) 0.00502(0.9917) 0.0074(0.9941)
25%Ag+/Ag-HTS 0.00205(0.9995) 0.00272(0.9971) 0.00518(0.9983) 0.01008(0.9982)
Table 3  Degradation rate constants (kapp/min-1) under different initial concentrations of MO
1 M. A. Henderson,A surface science perspective on TiO2 photocatalysis, Surface Science Reports, 66, 185(2011)
2 Atsushi Kogo,Nobuyuki Sakai, Tetsu Tatsuma, Photocatalysis of Au25-modified TiO2 under visible and near infrared light, Electrochemistry Communications, 12, 996(2010)
3 Jingjing Xu,Mindong Chen, Degang Fu. Study on highly visible light active Bi-doped TiO2 composite hollow sphere. Applied Surface Science, 257, 7381(2011)
4 Guohui Tian,Yajie Chen, Kai Pan, Dejun Wang, Wei Zhou, Zhiyu Ren, Honggang Fu, Ef?cient visible light-induced degradation of phenol on N-doped anatase TiO2 with large surface area and high crystallinity, Applied Surface Science, 256, 3740(2010)
5 Hua Xu,Zhi Zheng, Lizhi Zhang, Hailu Zhang, Feng Deng, Hierarchical chlorine-doped rutile TiO2 spherical clusters of nanorods: Large-scale synthesis and high photocatalytic activity. Journal of Solid State Chemistry, 181, 2516(2008)
6 Guidong Yang,Zheng Jiang, Huahong Shi, Martin O. Jones, Tiancun Xiao, Peter P. Edwards, Zifeng Yan, Study on the photocatalysis of F–S co-doped TiO2 prepared using solvothermal method, Applied Catalysis B: Environmental, 96, 458(2010)
7 Ying Cui,Hao Du , Lishi Wen, Doped-TiO2 Photocatalysts and Synthesis Methods to Prepare TiO2 Films, Journal of Materials Science & Technology, 24(5), 675(2008)
8 Cheewita Suwanchawalit,Sumpun Wongnawa, Pimpaporn Sriprang, Pachara Meanha, Enhancement of the photocatalytic performance of Ag-modified TiO2 photocatalyst under visible light, Ceramics International, 38, 5201(2012)
9 Liming Jiang,Guo Zhou, Jia Mi, Zhenyu Wu, Fabrication of visible-light-driven one-dimensional anatase TiO2/Ag heterojunction plasmonic photocatalyst, Catalysis Communications, 24, 48(2012)
10 li Akbar Ashkarran,Seyed Mahyad Aghigh, Mona kavianipour, Neda Jalali Farahani, Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents, Current Applied Physics, 11, 1048(2011)
11 Qifeng Chen,Weimei Shi, Yao Xu, Dong Wu, Yuhuan Sun, Visible-light-responsive Ag-Si codoped anatase TiO2 photocatalyst with enhanced thermal stability, Materials Chemistry and Physics, 125, 825(2011)
12 L Gomathi Devi, B. Nagaraj, K. Eraiah Rajashekhar,Synergistic effect of Ag deposition and nitrogen doping in TiO2 for the degradation of phenol under solar irradiation in presence of electron acceptor, Chemical Engineering Journal, 181, 259(2012)
13 B. Ohtani,Photocatalysis A to Z-What we know and what We donot know in a seientific sense, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11, 157(2010)
14 XIE Xide, LU Dong,Energy Band Theory of Solids (Shanghai, Fudan University Press, 1998)p., 160-161, 244
14 (谢希德, 陆栋, 固体能带理论 (上海, 复旦大学出版社, 1998) 160-161, 244)
15 Xingdang Hou,Meidong Huang, XiaoLing Wu, Andong Liu, Preparation and studies of photocatalytic silver-loaded TiO2 films by hybrid sol–gel method, Chemical Engineering Journal, 146, 42(2009)
16 Chun Liu,Chen Ge, Hengbo Yin, Min Ren, Yunsheng Zhang, Longbao Yu, Tingshun Jiang, Synthesis of porous hollow silica spheres using functionalized polystyrene latex spheres as templates, Korean Journal of Chemical Engineering, 28(6), 1458(2011)
17 Chun Liu,Hengbo Yin, Aili Wang, Zhanao Wu, Gang Wu, Tao Jiang, Shen Yutang, Jiang Tingshun, Size-controlled preparation of hollow silica spheres and glyphosate release, Transactions of Nonferrous Metals Society of China, 22, 1161(2012)
18 Min Ren,Hengbo Yin, Zhangzhun Lu, Aili Wang, Longbao Yu, Tingshun Jiang, Evolution of rutile TiO2 coating layers on lamellar sericite surface induced by Sn4+and the pigmentary properties, Powder Technology, 204, 249(2010)
19 Desong Wang,Jie Zhang, Qingzhi Luo, Xueyan Li, Yandong Duan, Jing An, Characterization and photocatalytic activity of poly(3- hexylthiophene)-modified TiO2 for degradation of methyl orange under visible light, Journal of Hazardous Materials, 169, 546(2009)
20 ZHANG Qinglian, SHEN Panwen,YIN Jingzhi, CAO Xizhang, LV Yunyang, TANG Renhuan, Inorganic Chemistry Series, Vol.6 (Beijing, Science Press, 1984)p.576, 577
20 (张青莲, 申泮文, 尹敬执, 曹锡章, 吕云阳, 唐任寰, 无机化学丛书(第六卷) (北京, 科学出版社 , 1984)576, 577)
21 Hengzhong Zhang,Jillian F Banfield. Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2, Journal of Physical Chemistry B, 104, 3481(2000)
22 SHI Liping,LIU Chun, Controllable preparation of polystyrene-methylacrylic acid latex templates and silica hollow spheres, Journal of Jiangsu University(Natural Science Edition), 33(6), 705(2012)
22 (石莉萍, 刘 纯, 聚苯乙烯-甲基丙烯酸模板与SiO2空心微球可控性制备, 江苏大学学报自然科学版, 33(6), 705(2012))
23 Agatino Di Paola,Giovanni Cufalo, Maurizio Addamo, Marianna Bellardita, Renzo Campostrini, Marco Ischia, Riccardo Ceccato, Leonardo Palmisano, Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite- based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions, Colloids and Surfaces A: Physicochem. Eng. Aspects, 317, 366(2008)
24 F. P. Koffyberg, K. Dwight,A. Wold,Interband transitions of semiconducting oxides determined from photoelectrolysis spectra, Solid State Commun, 30, 433(1979)
25 Hongqi Sun,Shaobin Wang, H. Ming Ang, Moses O. Tadé, Qin Li, Halogen element modified titanium dioxide for visible light photocatalysis, Chemical Engineering Journal, 162, 437(2010)
26 Chun Liu,Hengbo Yin, Liping Shi, Aili Wang, Yonghai Feng, Linqin Shen, Zhanao Wu, Gang Wu, Tao Jiang, Preparation of hollow titania spheres and their photocatalytic activity under visible light, Journal of Nanoscience and Nanotechnology, 14(9), 7072(2014)
27 Chweihuann Chiou,Chengying Wu, Rueyshin Juang, Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2 in aqueous solutions, Separation and Purification Technology, 62, 559(2008)
28 FANG Shijie,XU Mingxia, HUANG Weiyou, ZHANG Yuzhen, Photocatalytic degradation of methyl orange on nanocryetalline TiO2, Journal of the Chinese Ceramic Society, 29(5), 439(2001)
28 (方世杰, 徐明霞, 黄卫友, 张玉珍, 纳米TiO2光催化降解甲基橙, 硅酸盐学报, 29(5), 439(2001))
29 Mohammad Abdullah, Gary K. -C. Low, Ralph W. Matthews,Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide, Journal of Physical Chemistry, 94(17), 6820(1990)
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
No Suggested Reading articles found!