Please wait a minute...
Chinese Journal of Materials Research  2012, Vol. 26 Issue (5): 551-556    DOI:
Current Issue | Archive | Adv Search |
Effect of Co Addition on Microstructure of Matrix in Tungsten Carbide Surface Reinforced Composite
SHAN Quan, LI Zulai, JIANG Yehua, ZHOU Rong, SUI Yudong, CHEN Zhihui
School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093
Cite this article: 

SHAN Quan LI Zulai JIANG Yehua ZHOU Rong SUI Yudong CHEN Zhihui. Effect of Co Addition on Microstructure of Matrix in Tungsten Carbide Surface Reinforced Composite. Chinese Journal of Materials Research, 2012, 26(5): 551-556.

Download:  PDF(1098KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

WC–Co surface reinforced composite was formed by V–EPC (vacuum– expendable pattern casting), and the microstructure of the matrix in the composite was investigated. The results show that the Co addition caused the appearance of granular pearlite and troostite in the matrix, therefore the brittle tendency of the composite was lightened. After the molten steel infiltrating into the preform, the counter–diffusion in matrix decreased from the substrate to the surface of composite, the composition of the matrix became more uneven, and the formation of the spheroidal pearlite and troostite were facilitated. When the atomic concentration of W and C in the matrix increased, Co3W3C, η type carbide, was easier to be separated out. Before the temperature of the composite drop to 1200℃, Co3W3C could precipitate in the interface reaction between the matrix and the tungsten carbide particles, the hardness of the matrix would be increased, and then the abrasive resistance of the composite could be improved.

Key words:  composites      surface composite      V–EPC      granular pearlite      Co3W3C      interface reaction     
Received:  29 March 2012     
ZTFLH:  TB33  
Fund: 

Supported by National Natural Science Foundation of China No.50871048.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I5/551

1 C.P.Paul, H.Alemohammad, E.Toyserkani, A.Khajepour, S.Corbin, Cladding ofWC–12 Co on low carbon steel using a pulsed Nd: YAG laser, Materials Science and Engineering

A, 464, 170(2007)

2 Gerhard Gille, J. Bredthauer, B. Gries, Advanced and new grades of WC and binder powder–their properties and application, International Journal of Refractory Metals & Hard Materials, 18, 87(2000)

3 R.Polini, M.Delogu, G.Marcheselli, Adherent diamond coatings on cemented tungsten carbide substrates with new Fe/Ni/Co binder phase, Thin Solid Films, 494, 133(2006)

4 O.O.Eso, FAN Peng, Z.Z.Fang, A kinetic mould for cobalt gradient formation during liquid phase sintering of functionally graded WC–Co, International Journal of Refractory Metals & Hard Materials, 26, 91(2008)

5 LIU Xuemei, SONG Xiaoyan, ZHANG Jiuxing, ZHAO Shixian, Temperature distribution and neck formation of WC—-Co combined particles during spark plasma sintering, Materials Science and Engineering A, 488, 1(2008)

6 Mark Fitzsimmons, Vinod K. Sarin, Development of CVD WC–Co coatings, Surface and Coatings Technology, 137, 158(2001)

7 G.Bolelli, B.Bonferroni, G.Coletta, L.Lusvarghi, F.Pitaccol, Wear and corrosion behavior of HVOF WC–CoCr/CVD DLC hybrid coating systems deposited onto aluminum substrate, Surface and Coatings Technology, 205, 4211(2011)

8 YE Cheng, DU Xiaodong, YANG Haoyu, Analysis of microstructure and properties of particles reinforced cladding layer on the steel surface, Chinese journal of materials research, 26(1), 55(2012)

(叶 诚, 杜晓东, 杨皓宇, 钢表面颗粒增强熔覆层的组织和性能, 材料研究学报, 26(1), 55(2012))

9 Zulai Li, Yehua Jiang, Rong Zhou, Dehong Lu, Rongfeng Zhou. Dry three–body abrasive wear behavior ofWC reinforced iron matrix surface composites produced by V–EPC infiltration casting process, Wear, 262, 649(2007)

10 HAN Dewei, TIAN Rongzhang, Measurement Technique Handbook of Metal Hardness (Changsha, Central South University Press, 2003) p.337

(韩德伟, 田荣章,  金属硬度检测技术手册 (长沙, 中南大学出版社, 2003) p.337)

11 CUI Zhongqi, Metallography and Heat Treatment (Beijing, China Machine Press, 2000) p.236

(崔忠圻,  金属学与热处理  (北京, 机械工业出版社, 2000) p.236)

12 G.S.Upadhyaya, Cemented Tungsten Carbides: Production, Properties, and Testing, (New Jersey, Noyes Publications, 1998) p.7

13 D.V.Suetin, I.R.Shein, A.L.Ivanovskii, Structural, electronic and magnetic properties of η carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from first principles calculations, Physical B, 403, 2654(2008)

14 XIAO Yifeng, HE Yuehui, FENG Ping, XIE Hong, ZHANG Lijuan, HUANG Ziqian, HUANG Baiyun, Effects of carbon content on microstructure and properties of carbon–deficient cemented carbides, The Chinese Journal of Nonferrous Metals, 17(1), 39(2007)

(肖逸锋, 贺跃辉, 丰 平, 谢 宏, 张丽娟, 黄自谦, 黄伯云, 碳含量对缺碳硬质合金组织和性能的影响, 中国有色金属学报,  17(1), 39(2007))

15 LI Wenbo, YANG Yi, LIU Jian, YANG Gang, Effect of heating rate on sintering behavior of WC–Co cemented carbide under an electric field, Transactions of Materials and Heat Treatment, 31(8), 34(2010)

(李文波, 杨 屹, 刘 剑, 杨 刚, 升温速度对电场烧结硬质合金的影响, 材料热处理学报,  31(8), 34(2010))

16 J.A.Dean, Lange’s Handbook of Chemistry, 11th edition (Beijing, Science Press, 1991) p.4–40

(J.A.迪安,  兰氏化学手册, 11版(北京, 科学出版社, 1991) p.4--40)

17 A.Z.Antoni, J.Y.Shen, M.C.Durand, About one stable and three metastable eutectic microconstituents in the Fe–W– C system, International Journal of Refractory Metals & Hard Materials, 26, 372(2008)

18 B.Reichel, K.Wagner, D.Janisch, W.Lengauer, Alloyed W—(Co, Ni, Fe)—C phases for reaction sintering of hardmetals, International Journal of Refractory Metals & Hard Materials, 28, 638(2010)

19 D.V.Shtansky, G.Inden, Phase transformation in Fe–Me– C and Fe–W–C steel–I. the structural evolution during tempering at 700 , Acta Material, 45, 2861(1997)

[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
No Suggested Reading articles found!