Please wait a minute...
Chin J Mater Res  2011, Vol. 25 Issue (4): 373-380    DOI:
论文 Current Issue | Archive | Adv Search |
Gaseous and Electrochemical Hydrogen Storage Kinetics of As–Spun Nanocrystalline Mg2Ni1−xCux(x=0–0.4) Alloys
ZHANG Yanghuan1,2,   REN Huiping2,   MA Zhihong1,3,   LI Xia ZHANG1,2,  Guofang1,2,  ZHAO Dongliang1
1.Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081
2.Elected State Key Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010
3.Baotou Research Institute of Rare Earths, Baotou 014010
Cite this article: 

ZHANG Yanghuan REN Huiping MA Zhihong LI Xia ZHANG Guofang ZHAO Dongliang. Gaseous and Electrochemical Hydrogen Storage Kinetics of As–Spun Nanocrystalline Mg2Ni1−xCux(x=0–0.4) Alloys. Chin J Mater Res, 2011, 25(4): 373-380.

Download:  PDF(1457KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The Mg2Ni1−xCux (x=0, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys have been prepared by melt-spinning technology. The structures of the as-cast and spun alloys are characterized by XRD, SEM and TEM. The gaseous hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys is tested by an automatic galvanostatic system. The results show that all the as-spun alloys hold an entire nanocrystalline structure and are free of amorphous phase. The substitution of Cu for Ni, instead of changing the major phase Mg2Ni, leads to a visible refinement of the grains of the as-cast alloys. Furthermore, both the melt spinning treatment and Cu substitution significantly improve the gaseous and electrochemical hydrogen storage kinetics of the alloys. As the spinning rate increases from 0 (As-cast is defined as spinning rate of 0 m/s) to 30m/s, the hydrogen absorption saturation ratio in 5 min, for the Mg2Ni0.8Cu0.2alloy, increases from 56.7 to 92.7%, the hydrogen desorption ratio in 20 min from 14.9
to 40.4%, the high rate discharge ability from 38.5 to 75.5%, the hydrogen diffusion coefficient from 8.34×10-12cm2/s to 3.74×10-11cm2/s.
Received:  17 November 2010     
ZTFLH: 

TB321

 
Fund: 

Supported by National Nature Science Foundation of China Nos.50871050 & 50961009, Nature Science Foundation of Inner Mongolia No.2010ZD05.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2011/V25/I4/373

1 I.P.Jain, C.Lal, A.Jain, Hydrogen storage in Mg: A most promising material, Int. J. Hydrogen Energy, 35(10), 5133(2010)

2 X.Y.ZHAO, L.Q.MA, Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries, Int. J. Hydrogen Energy, 34(11), 4788(2009)

3 T.Spassov, U.K¨oster, Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7 alloy, J. Alloys Compd, 279(2), 279(1998)

4 L.J.Huang, G.Y.Liang, Z.B.Sun, D.C.Wu, Electrode properties of melt-spun Mg–Ni–Nd amorphous alloys, J. Power Sources, 160(1), 684(2006)

5 S.N.Kwon, S.H.Baek, D.R.Mumm, S.H.Hong, M.Y.Song, Enhancement of the hydrogen storage characteristics of Mg by reactive mechanical grinding with Ni, Fe and Ti, Int. J. Hydrogen Energy, 33(17), 4586(2008)

6 P.Palade, S.Sartori, A.Maddalena, G.Principi, S.Lo Russo, M.Lazarescu, G.Schinteie, V.Kuncser, G.Filoti, Hydrogen storage in Mg–Ni–Fe compounds prepared by rapid quenching and ball milling, J. Alloys Compd, 415(1–2), 170(2006)

7 G.Mulas, F.Delogu, G.Cocco, Effects of mechanical processing on the kinetics of H2 absorption in Mg2Ni alloys, J. Alloys Compd, 473(1–2), 180(2009)

8 I.Gonz`alez Fern`andez, G.O.Meyer, F.C.Gennari, Hydriding/dehydriding behavior of Mg2CoH5 produced by reactive mechanical milling, J. Alloys Compd, 464(1–2), 111(2008)

9 M.Y.Song, S.N.Kwon, J.S.Bae, S.H.Hong, Hydrogenstorage properties of Mg–23.5Ni–(0 and 5)Cu prepared by melt spinning and crystallization heat treatment, Int. J. Hydrogen Energy, 33(6), 1711(2008)

10 M.Savyak, S.Hirnyj, H.-D.Bauer, M.Uhlemann, J.Eckert, L.Schultz, A.Gebert, Electrochemical hydrogenation of Mg65Cu25Y10 metallic glass, J. Alloys Compd, 364(1–2), 229(2004)

11 L.J.Huang, G.Y.Liang, Z.B.Sun, Y.F.Zhou, Nanocrystallization and hydriding properties of amorphous meltspun Mg65Cu25Nd10 alloy, J. Alloys Compd, 432(1–2), 172(2007)

12 G.Y.Liang, D.C.Wu, Lu Li, L.J.Huang, A discussion on decay of discharge capacity for amorphous Mg–Ni–Nd hydrogen storage alloy, J. Power Sources, 186(2), 528(2009)

13 G.K.Williamson, W.H.Hall, X–ray line broadening from filed aluminium and wolfram, Acta Metall, 1(1), 22(1953)

14 G.Zheng, B.N.Popov, R.E.White, Electrochemical Determination of the Diffusion Coefficient of Hydrogen Through an LaNi4.25Al0.75 Electrode in Alkaline Aqueous Solution, J. Electrochem. Soc, 142(8), 2695(1995)

15 K.Tanaka, Y.Kanda, M.Furuhashi, K.Saito, K.Kuroda, H.Saka, Improvement of hydrogen storage properties of melt-spun Mg–Ni–RE alloys by nanocrystallization, J. Alloy Compd, 295, 521(1999)

16 Y.Wu, W.Han, S.X.Zhou, M.V.Lototsky, J.K.Solberg, V.A.Yartys, Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg-10Ni-2Mm alloys, J. Alloys Compd, 466(1–2), 176(2008)

17 L.Zaluski, A.Zaluska, J.O.Str¨om-Olsen, Nanocrystalline metal hydrides, J. Alloys Compd. 253-254, 70(1997)

18 S.Orimo, H.Fujii, K.Ikeda, Notable hydriding properties of a nanostructured composite material of the Mg2Ni-H system synthesized by reactive mechanical grinding, Acta Mater, 45(1), 331(1997)

19 J.H.Woo, K.S.Lee, Electrode characteristics of nanostructured Mg2Ni-type alloys prepared by mechanical alloying, J. Electrochem. Soc, 146(3), 819(1999)

20 M.Y.Song, C-D.Yim, S.N.Kwon, J-S.Bae, S-H.Hong, Preparation of Mg–23.5Ni–10(Cu or La) hydrogen-storage alloys by melt spinning and crystallization heat treatment, Int. J. Hydrogen Energy, 33(1), 87(2008)

21 M.Au, J.Wu, Q.Wang, The hydrogen storage properties and the mechanism of the hydriding process of some multicomponent magnesium-base hydrogen storage alloys, Int. J. Hydrogen Energy, 20(2), 141(1995)

22 A.Gasiorowski, W.Iwasieczko, D.Skoryna, H.Drulis, M.Jurczyk, Hydriding properties of nanocrystalline Mg2−xMxNi alloys synthesized by mechanical alloying (M=Mn, Al), J. Alloys Compd, 364(1–2), 283(2004) 23 N.Kuriyama, T.Sakai, H.Miyamura, I.Uehara, H.Ishikawa, T.Iwasaki, Electrochemical impedance and deterioration behavior of metal hydride electrodes, J. Alloys Compd, 202(1–2), 183(1993)

24 H.Niu, D.O.Northwood, Enhanced electrochemical properties of ball-milled Mg2Ni electrodes, Int. J. Hydrogen Energy, 27(1), 69(2002)
[1] WANG Lei JIANG Fenghua GONG Haibo WANG Jieqiang. Synthesis and Properties of Well-dispersive and Spherical YAG:Ce3+ Phosphors[J]. 材料研究学报, 2012, 26(4): 414-418.
[2] LIU Jia NI Wen YU Miao. Preparation of High–strength Concrete by Using Fly Ash and Iron Ore Tailings as Major Raw Materials[J]. 材料研究学报, 2012, 26(3): 295-301.
[3] WEI Xiaoqing NI Xingyuan SHEN Jun ZU Guoqing ZHANG Zhihua DU Ai. Synthesis of Thermal Insulation Material Alumina Aerogels and Thermal Properties[J]. 材料研究学报, 2012, 26(3): 261-266.
[4] HUANG Hongyan YANG Mei ZHANG Chunzi SHAO Zhongcai. Effects of Technological Parameters in the Process of HA Preparation[J]. 材料研究学报, 2012, 26(2): 187-190.
[5] LIU Yi LI Haijin ZHANG Qing LIU Houtong. Fabrication and Thermoelectric Properties of Peovskite-type Thermoelectric Oxide Y0.95R0.05CoO3 (R=Ca, Sr, Ba)[J]. 材料研究学报, 2012, 26(1): 31-36.
[6] WEI Xiaoling YANG Hui SHEN Xiaodong. The Effect of Titania Dopant on the Performance of Sodium-beta''–alumina[J]. 材料研究学报, 2011, 25(6): 597-601.
[7] GAO Huili SHEN Yong HE Qiang XU Jian. ZrTiCoAl Bulk Metallic Glasses and Their Mechanical Properties[J]. 材料研究学报, 2011, 25(6): 602-606.
[8] GAO Yong XU Xingxiang YANG Zhenming ZHANG Jinsong. Preparation and Properties of TiC/Ti3SiC2 Foam Ceramics[J]. 材料研究学报, 2011, 25(5): 539-544.
[9] XU Wei YAO Aihua AI Fanrong WANG Deping HUANG Wenhai. Drug Release Behavior of Porous Hydroxyapatite Microspheres[J]. 材料研究学报, 2011, 25(4): 439-443.
[10] LOU Baiyang WU Shaolong YANG Jing XU Bin. Electro-catalytic Properties of Pd/Sn Graphite Anode in Alkaline Medium[J]. 材料研究学报, 2011, 25(3): 333-336.
[11] LU Bin SUN Xudong SUN Ting WANG Yi. Synthesis of Nanocrystalline Sc2O3 Powder Using a Microwave Homogenous Precipitation Approach  [J]. 材料研究学报, 2011, 25(3): 255-258.
[12] ZHANG Yan ZHOU Kechao ZHANG Xiaoyong ZHANG Dou. Porous Hydroxyapatite Ceramics Fabricated by an Ice Templating Process[J]. 材料研究学报, 2011, 25(3): 289-294.
[13] WU Fayu ZHANG Junwei ZHOU Yanwen LI Weijuan. Conductance Characteristics of Carbon Microcoil Based on a Two-band Model of π–electron[J]. 材料研究学报, 2011, 25(2): 187-192.
[14] LI Wanxi LV Baoliang XU Yao WU Dong. Synthesis and Magnetic Properties of Dodecahedral and Octodecahedral Magnetite[J]. 材料研究学报, 2011, 25(2): 141-146.
[15] HE Yilun ZHOU Wuxi LI Songlin LIU Huaifei LAI Tianmiao TANG Shenglong. Preparation and High Temperature Phase Stability of La2O3–Y2O3–ZrO2 Composite Ceramic Nanopowder[J]. 材料研究学报, 2011, 25(1): 32-38.
No Suggested Reading articles found!