Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (3): 332-336    DOI:
论文 Current Issue | Archive | Adv Search |
Study on Thermal Properties of Graphtie/Paraffin Composites as Phase Change Heat Storage Material
 ZHANG  Xiu-Rong, SHU  Dong-Sheng, GAO  Jin-Wei, TUN  Chu-Yang
Key Lab of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640
Cite this article: 

ZHANG Xiu-Rong, SHU Dong-Sheng, GAO Jin-Wei, TUN Chu-Yang. Study on Thermal Properties of Graphtie/Paraffin Composites as Phase Change Heat Storage Material. Chin J Mater Res, 2010, 24(3): 332-336.

Download:  PDF(823KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

EG was exfoliated into MSGF under high-energy ultrasound, and then the graphite/paraffin composite was prepared by mixing MSGF into melted paraffin. The structure and thermal properties of the composites were characterized using SEM, Hot Disk, and DSC. The experimental results show that the composites exhibit both high thermal conductivity and good thermal storage capacity, the speed of heat storage is raised and the chemical properties are stable. Moreover, with the increase of MSGF’s mass fraction, the thermal conductivity behaves non-liner increase both in solid and liquid states. Meanwhile, the melting point and latent heat capacity show negligible decrease.

Key words:  composites      micron-size graphite flake      paraffin      thermal properties      phase change heat storage material     
Received:  01 March 2010     
ZTFLH: 

TK512

 

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I3/332

[1]V.Velraj, R.V.Seeinraj, B.Hafner, Heat transfer enhancement in a latent heat storage system, Sol. Energy, 65(3), 171(1999)
[2]X.F.Li, D.S.Zhu, X.J.Wang, Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids, Thermochimca Acta, 469(1-2), 98(2008)
[3]Wu S, Zhu D, Li X, Thermal energy storage behavior of Al2O3--H2O nanofluids, Thermochimca Acta, 483(1-2), 73(2009)
[4]J.L.Zeng, Z.Cao, D.W.Yang, Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM, J. Therm. Anal. Calorim., 95(2), 507(2009)
[5]M.Fujii, X.Zhang, H.Xie, Measuring the thermal conductivity of a single carbon nanotube, Phys. Rev. Lett, 95(6), 2(2005)
[6]K.Sun, M.A.Stroscio, M.Dutta, Graphite c-axis thermal conductivity, Superlattices and Microstruct, 45(2), 60(2009)
[7]ZHANG Zhengguo, WANG Xueze, FANG Xiaoming, Structure and thermal properties of composite paraffin/expand graphite phase-change material, Journal of South China University of Technology (Natural Science Edition), 34(3), 1(2006)
[8](张正国, 王学泽, 方晓明, 石蜡/膨胀石墨复合相变材料的结构与热性能, 华南理工大学学报(自然科学版), 34(3), 1(2006))
[9]K.Kim, Z.Yue, H.Jang, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457(7230), 706(2009)
[10] A.Novoselov, The rise of graphene, Nat. Mater, 6, 183(2007)
[11]T.Wei, Z.Fan, G.Luo, A rapid and efficient method to prepare exfoliated graphite by microwave irradiation, Carbon, 47(1), 337(2009)
[12] M.Inagaki, T.Suwa, Pore structure analysis of exfoliated graphite using image processing of scanning electron micro-graphs, Carbon, 39, 915(2001)
[13]J.W.Gao, R.T.Zheng, H.Ohtani, Experimental investigation of heat conduction mechanisms in nanofluids-clue on clustering, Nano Lett., 9(12), 4128(2009)
[14] Jifen Wang, Huaqing Xie, Zhong Xin, Thermal properties of paraffin based composites containing multi-walled carbon nanotubes, Thermochimica Acta, 488, 39(2009)
[15]A.Sari, A.Karaipekli, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material, Appl. Therm. Eng., 27(8-9), 1271(2007)

[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] LI Ruiy, XIE Min, ZHANG Yonghe, PEI Xun, LIU Yang, SONG Xiwen. Physical Properties of Er2O3 Doped Gd2(Zr0.8Ti0.2)2O7 Ceramic Materials[J]. 材料研究学报, 2022, 36(1): 49-54.
[11] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[12] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[13] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[14] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[15] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
No Suggested Reading articles found!