Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (3): 239-244    DOI:
论文 Current Issue | Archive | Adv Search |
High-temperature High-speed Hot Deformation Behavior of Inconel Alloy 625
YAN Shicai 1,2, CHENG Ming2,  ZHANG Shihong 1,2, ZHANG Haiyan2, ZHANG Weihong2, ZHANG Liwen1
1.Department of Material Science and Engineering, Dalian University of Technology, Dalian 116024
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

YAN Shicai, CHENG Ming, ZHANG Shihong, ZHANG Haiyan, ZHANG Weihong, ZHANG Liwen. High-temperature High-speed Hot Deformation Behavior of Inconel Alloy 625. Chin J Mater Res, 2010, 24(3): 239-244.

Download:  PDF(1272KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hot compression test results of Inconel625 alloy have been analyzed and the errors in flow stress caused by thermal effect were corrected. The true stress-strain curves were obtained at the temperature of 1000--1200℃ and the strain rates of 10--80 s-1. Constitutive equation of Inconel625 alloy at high temperature and high speed was established by curvilinear regression method. The microstructure after deformation showed that enhancing strain rate can refine< microstructure well, but there would be twinning remained when the strain rate was overly high. The microstructure would be most homogenous and finest under acceptable temperature (1050℃) and strain rate (50 s-1).

Key words:  metallic materials, Inconel alloy 625, high-temperature high-speed, hot deformation, DRX     
Received:  14 January 2010     
ZTFLH: 

TG146

 
Fund: 

Supported by National Natural Science Foundation of China No.50834008.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I3/239

1 YE Jun, United States Ni-base Super Alloy (Beijing, The Press of Science, 1978) p.55
(冶军,  美国镍基高温合金  (北京, 科学出版社, 1978) p.55)
2 WEN Jinglin, Extrusion and Drawing Technology of Metal (Shenyang, The Press of Northeastern University, 1996)
p.87
(温景林,  金属挤压与拉拔工艺学 (沈阳, 东北大学出版社, 1996) p.87)
3 ZHANG Shihong, WANG Zhongtang, XU Yi, WANG Benxian, ZHOU Wenlong, Superalloy GH1140 tube made by hot extrusion, Hot Working Technology, 26(6), 66(2003)
(张士宏, 王忠堂, 许沂, 王本贤, 周文龙, GH1140管材的热挤压成形, 热加工工艺,  26(6), 66(2003))
4 ZHANG Shihong, WANG Zhongtang, XU Yi, XU Tingfeng, MO Lihua, ZHOU Wenlong, Analysis and experiment study on tube extrusion, Metal Forming Technology, 20(1), 6(2002)
(张士宏, 王忠堂, 许 沂, 徐亭风, 莫立华, 周文龙, 管材挤压工艺分析与实验研究, 金属成形工艺,  20(1), 6(2002))
5 F.Cortial, J.M.Corrieu, C.Vernot-Loier, Influence of heat treatments on microstructure, mechanical properties, and corrosion resistance of weld alloy 625, Metallurgical and Materials Transactions, 26(5), 1273(1995)
6 M.J.Cieslak, T.J.Headley, T.Kollie, A.D.Romig, Jr, A melting and solidification study of alloy 625, Metallurgical Transactions A, 19(9), 2319(1988)
7 Lee A. James, The effect of temperature upon the fatigue crack propagation behavior of alloy 625, Metals and Materials Society, 3(3), 501(1991)
8 ZHANG Weihong, ZHANG Shihong, Correction of Hot compression test data and constitutive equation of NiTi alloy, Acta Metallurgica Sinica, 42(10), 1036(2006)
((张伟红, 张士宏, 合金热压缩实验数据的修正及其本构方程, 金属学报,  42(10), 1036(2006))
9 R.Ebrahimi, A.Najafizadeh, A new method for evaluation of friction in bulk metal forming, Journal of Materials Processing Technology, 152(2), 136(2004)
10 S.I.Oh, S.L.Semiatin, J.J.Jonas, An analysis of the isothermal hot compression test, Metallurgical Transaction A, 23(3), 963(1992)
11 C.M.Sellars, W.J.McTegart, On the mechanism of hot deformation, Acta Metall., 14(6), 1136(1966)
12 H.J.McQueen, N.D.Ryan, Constitutive analysis in hot working, Mater. Sci. Eng., 322(3), 43(2002)

[1] LI Junchen PENG Xiaodong LIU Junwei YANG Yan ZENG Li. Deformation Behavior of Alloy Mg–9Li–3Al–2.5Sr at Elevated Temperature[J]. 材料研究学报, 2012, 26(3): 309-314.
[2] LIU Huaqiang TANG Di CAI Qingwu MENG Qiang. Deforming Texture and Deformation Mechanism of Coordination of AZ31 Magnesium Alloy Sheets[J]. 材料研究学报, 2012, 26(3): 231-239.
[3] FAN Jinping XU Bingshe WANG Shebin LIU Lu. Effects of Y on Elevated Temperature Mechanical Properties of Mg–8Al–2Sr Alloy[J]. 材料研究学报, 2012, 26(2): 132-137.
[4] LIU Jing CHEN Fuyi ZHANG Jiye FAN Lihong ZHANG Jinsheng. Electrodeposition and Electrocatalytic Properties of Silver–Copper Bimetallic Nanoalloy[J]. 材料研究学报, 2012, 26(1): 49-54.
[5] DING Zhiping WANG Tengfei LI Ming CHEN Jiping. Low Cycle Fatigue Unit Cell Model for Single Crystal Nickel-base Superalloy under Multiaxial Non-proportional Loading[J]. 材料研究学报, 2011, 25(5): 455-463.
[6] WANG Shan WANG Mingpu CHEN Chang XIA Fuzhong YANG Qiaoran. The Microstructures and Textures of the Cold–rolled Ta–7.5%W Alloy Foils[J]. 材料研究学报, 2011, 25(5): 476-482.
[7] LIU Zili ZHOU Guibin LIU Xiqin LI Jian. Effects of Sb Addition on Corrosion Resistance of AM50–Y Magnesium Alloy[J]. 材料研究学报, 2011, 25(5): 527-533.
[8] GE Xiangnan ZHU Dachuan FENG Zuoming. A New Beta Titanium Alloy of Low Elastic Modulus[J]. 材料研究学报, 2011, 25(4): 369-372.
[9] MENG Jie JIN SUN Xiaofeng HU Zhuangqi. Compression Deformation of a Nickel-Base Single Crystal Superalloy of Different Orientations[J]. 材料研究学报, 2011, 25(4): 355-361.
[10] ZHOU Hongwei HE Yizhu ZHANG Wenxue JIANG Jianqing. Oxidation Behavior of Ti600 Titanium Alloy[J]. 材料研究学报, 2011, 25(3): 295-302.
[11] SHANG Wei CHEN Baizhen SHI Xichang WEN Yuqing. Micro–arc Oxidation and Sol–Gel Composite Coatings on Magnesium Alloy[J]. 材料研究学报, 2011, 25(1): 57-60.
[12] YANG Yi LI Geping WU Songquan LI Yulan YANG Ke. Progress in Research of Gum Metal[J]. 材料研究学报, 2011, 25(1): 1-6.
[13] GUAN Renguo ZHAO Zhanyong CAO Furong ZHANG Qiusheng HUANG Hongqian. Simulation and Experimental Research on Continuous Extending Rheo–extrusion Process for Producing 6201 Alloy Tube[J]. 材料研究学报, 2011, 25(1): 25-31.
[14] WANG Xihan LI Shujun JIA Mingtu HAO Yulin YANG Rui GUO Zhengxiao. Fabrication and Mechanical Properties of Porous Ti–24Nb–4Zr–8Sn Alloy for Biomedical Applications[J]. 材料研究学报, 2010, 24(4): 378-382.
[15] CHANG Yang ZHANG Linxi LUO Mingbiao LIAO Zhenwei CHEN Zhongsheng. Synthesis and Adsorptive Removal for Uranium (VI) Ions of Titanate Nanotubes[J]. 材料研究学报, 2010, 24(4): 424-428.
No Suggested Reading articles found!