Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (11): 874-880    DOI: 10.11901/1005.3093.2019.249
ARTICLES Current Issue | Archive | Adv Search |
Effect of Minor-Cu Addition and Thermomechanical Treatment on Properties of Al-Fe Alloy
WANG Haisheng1(),MIN Jie1,WANG Yun1,DENG Keyue2
1. Department of Mechanical Engineering, Honghe University, Mengzi 661100, China
2. Jiangxi Boneng Shangrao Bus Co. Ltd. , Shangrao 334100, China
Cite this article: 

WANG Haisheng,MIN Jie,WANG Yun,DENG Keyue. Effect of Minor-Cu Addition and Thermomechanical Treatment on Properties of Al-Fe Alloy. Chinese Journal of Materials Research, 2019, 33(11): 874-880.

Download:  HTML  PDF(4263KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of minor-Cu addition and thermomechanical treatment on the microstructure and properties of Al-Fe alloy was investigated by means of optical microscopy, SEM, tensile test, and conductivity measurement. The results show that Cu was evenly distributed in the matrix of as-cast Al-Fe-Cu alloy, while the Fe segregated at grain boundary. After extrusion the properties of Al-0.7Fe-0.2Cu alloy reached the optimum, the conductivity was 59.90% IACS, the tensile strength was 108 MPa, and the hardness was 31.2HV. The tensile strength of Al-0.7Fe-0.2Cu alloy decreased sharply with the increase of annealing temperature. The tensile strength was the lowest (100 MPa) after annealing at 400℃, while the elongation was the highest (31.3%). The peak electrical conductivity of Al-0.7Fe-0.2Cu alloy was 62.61% IACS after annealing at 250℃. In addition, many fine needle-like θ(Al2Cu) phase precipitated during annealing in Al-0.7Cu-0.2Cu alloy, which interacted with dislocations. With the increase of annealing temperature, dislocation density decreased and grain refinement occurred.

Key words:  Al-Fe-Cu alloy      tensile strength      electrical conductivity      elongation      θ (Al2Cu) precipitate     
Received:  13 May 2019     
ZTFLH:  TG162.83  
Fund: College Alliance Youth Project of Yunnan Province(2017FH001-119);Applied Basic Research Program Project of Yunnan Province(2018FD089)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.249     OR     https://www.cjmr.org/EN/Y2019/V33/I11/874

AlloyFeCuAl
A0.70.2Bal.
B0.90.2Bal.
C0.70.4Bal.
Table 1  Chemical composition of Al-Fe alloy (mass fraction, %)
Fig.1  Optical morphologies of as-cast Al-Fe-Cu alloy (a) alloy A, (b) alloy B and (c) alloy C
Fig.2  SEM morphology (a) and Al (b), Fe (c), Cu (d) element distributions for as-cast A alloy
Fig.3  SEM morphology of as-cast alloy A
PositionAlFeCu
183.1115.131.76
295.114.690.20
394.774.500.73
499.650.190.16
Table 2  Chemical components of different regions in Fig.3 (mass fraction, %)
Fig.4  DSC curves of as-cast Al-Fe-Cu alloys (a) alloy A, (b) alloy B and (c) alloy C
Fig.5  Optical morphologies of homogenized Al-Fe-Cu alloy (a) alloy A, (b) B and (c) C
AlloyConductivity/%IACSTensile strength/MPa

Hardness

(HV)

A59.90108.031.20
B58.68111.035.40
C55.71119.032.60
Table 3  Properties of extruded al-fe-cu alloys
Fig.6  TEM morphologies of as-extruded Al-Fe-Cu alloy (a) A, (b) B and (c) C
Fig.7  Electrical conductivity of cold-drawn A alloy annealed at different temperature
Fig.8  Tensile strength and elongation of cold-drawn A alloy annealed at different temperature
Fig.9  TEM morphologies of as-annealed A Alloy annealed at different temperature (a) at room temperature; (b) at 200℃; (c) at 300℃; (d) at 400℃.
[1] Jiang X Y, Zhang Y, Yi D Q, et al. Low-temperature creep behavior and microstructural evolution of 8030 aluminum cables [J]. Mater. Charact., 2017, 130: 181
[2] Gao M W. A study on solidification microstructure of high purity Al-Fe binary alloy [D]. Shenyang: Northeastern University, 2013
[2] (高明伟. 高纯Al-Fe二元合金凝固组织研究 [D]. 沈阳: 东北大学, 2013)
[3] Li W H. Study on microstructure and properties of Al-Fe-Cu alloy for wire and cable [D]. Changsha: Central South University, 2012
[3] (李卫红. 电线电缆用Al-Fe-Cu合金组织与性能的研究 [D]. 长沙: 中南大学, 2012)
[4] Zhou Z P, Li R D, Ma J C. Effect of Cr and Mg on the morphology of primary phase in Al-0.5%Fe alloy [J]. J. Shenyang Univ. Technol., 2008, (3): 284
[4] 周振平, 李荣德, 马建超. Cr和Mg对Al-5%Fe合金中初生相形貌的影响 [J]. 沈阳工业大学学报, 2008, (3): 284)
[5] Li W H, Yang F L, Zang B, et al. Effect of annealing on microstructure and mechanical properties of cold drawn A1-0.7Fe-0.2Cu alloy [J]. Hot Work. Technol., 2012, 41(22): 172
[5] 李卫红, 杨伏良, 臧 冰等. 退火对冷拉拔Al-0.7Fe-0.2Cu合金组织性能的影响 [J]. 热加工工艺, 2012, 41(22): 172
[6] Kong X X, Zhang H, Ji X K. Microstructures and mechanical properties evolution of an Al-Fe-Cu alloy processed by repetitive continuous extrusion forming [J]. Mater. Sci. Eng., 2014, 612A: 131
[7] Goulart P R, Lazarine V B, Leal C V, et al. Investigation of intermetallics in hypoeutectic Al-Fe alloys by dissolution of the Al matrix [J]. Intermetallics, 2009, 17: 753
[8] Birol Y. Thermomechanical processing of a twin-roll cast al-1fe-0.2si alloy [J]. J. Mater. Proc. Technol., 2008, 202: 564
[9] Guo L, Yi D Q, Zang B, et al. Effect of extrusion ratio on microstructure and electrical properties of AA8030 aluminum alloy rod [J]. Chin. J. Nonferrous Met., 2013, 23: 2083
[9] (郭 磊, 易丹青, 臧 冰等. 挤压比对AA8030铝合金棒材组织及电性能的影响 [J]. 中国有色金属学报, 2013, 23: 2083)
[10] Deng X B, Jiang X Y, Wang B. Effect of Fe and Cu content on microstructure and properties of Al-Fe-Cu alloy for cables [J]. Light Alloy Process. Technol., 2016, 44(12): 29
[10] (邓显波, 江新洋, 王 斌. 铁、铜含量对电缆用Al-Fe-Cu合金组织和性能的影响 [J]. 轻合金加工技术, 2016, 44(12): 29)
[11] Mansourinejad M, Mirzakhani B. Influence of sequence of cold working and aging treatment on mechanical behaviour of 6061 aluminum alloy [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2072
[12] Kang B S, Zhen L, Kim W H, et al. Effect of cold rolling and aging treatment on mechanical property and precipitation behavior in a Al-Mg-Si alloy [J]. Mater. Sci. Forum, 1996, 217-222: 827
[13] Lipińska M, Bazarnik P, Lewandowska M. The influence of severe plastic deformation processes on electrical conductivity of commercially pure aluminium and 5483 aluminium alloy [J]. Arch. Civil Mech. Eng., 2016, 16: 717
[14] Murashkin M Y, Sabirov I, Medvedev A E, et al. Mechanical and electrical properties of an ultrafine grained Al-8.5wt. % RE (RE=5.4wt. % Ce, 3.1 wt. % La) alloy processed by severe plastic deformation [J]. Mater. Des., 2016, 90: 433
[15] Hou J P, Chen Q Y, Wang Q, et al. Effects of annealing treatment on the microstructure evolution and the strength degradation behavior of the commercially pure Al conductor [J]. Mater. Sci. Eng., 2017, 707A: 511
[16] Zhang J Y, Ma M Y, Shen F H, et al. Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of Al-Mg-Si alloy cables [J]. Mater. Sci. Eng., 2018, 710A: 27
[17] Buranova Y, Kulitskiy V, Peterlechner M, et al. Al3 (Sc, Zr)-based precipitates in Al-Mg alloy: Effect of severe deformation [J]. Acta Mater., 2017, 124: 210
[18] ?ad?rl? E, Tecer H, ?ahin M, et al. Effect of heat treatments on the microhardness and tensile strength of Al-0.25wt.% Zr alloy [J]. J. Alloys Compd., 2015, 632: 229
[19] Wang X F, Guo M X, Zhang Y, et al. The dependence of microstructure, texture evolution and mechanical properties of Al-Mg-Si-Cu alloy sheet on final cold rolling deformation [J]. J. Alloys Compd., 2016, 657: 906
[1] QI Yunchao, FANG Guodong, ZHOU Zhengong, LIANG Jun. In-plane Tensile Strength for Needle-punched Composites Prepared by Different Needling Processes[J]. 材料研究学报, 2023, 37(1): 21-28.
[2] ZHANG Baochao, TONG Yu, LI Wanhong. Preparation and Properties of Graphene Paper Garland and its Cement-based Composite[J]. 材料研究学报, 2021, 35(9): 689-693.
[3] Yanxiang WANG, Shunsheng SU, Wenxin FAN, Jianjie QIN, Ce QU, Chengguo WANG. Metal Catalyst for Preparation of Multiscale Reinforcement of Carbon Nanotubes on Carbon Fibers[J]. 材料研究学报, 2018, 32(7): 495-501.
[4] Hongbo DONG, Zhiyong JIANG, Shengwu ZHOU, Kun ZHANG, Hongxiao LIU. Effect of Pre-aging on Superplasticity of TB8 Ti-Alloy[J]. 材料研究学报, 2018, 32(7): 541-546.
[5] Qiuying LU, Hongwei JIANG. Polyether Modified MQ Resin Reinforced Polyurethane Elastomer[J]. 材料研究学报, 2017, 31(7): 489-494.
[6] YANG Zhenjun, SUN Hongliang, HUANG Zewen, ZHU Degui, WANG Lianghui. Effect of Surface Treatment on Tensile Property of A Near Lamellar Gamma-based TiAl-alloy[J]. 材料研究学报, 2016, 30(1): 75-80.
[7] Liying GUO,Bin ZHANG,Zhiming WANG,Xiuyun MA,Pengcheng HUANG. Synthesis of Functional Ionic Liquids as Solvent for Straw and Application in Modification of Phenolic Resin[J]. 材料研究学报, 2015, 29(2): 149-154.
[8] Yongqiang REN,Chengjia SHANG,Hongwei ZHANG,Shengfu YUAN,Erhu CHEN. Effect of Retained Austenite on Toughness and Plasticity of 0.23C-1.9Mn-1.6Si Steel[J]. 材料研究学报, 2014, 28(4): 274-280.
[9] CHU Xuming WANG Hui HE Deping HE Siyuan. Metallurgy bonding on the fabrication of shaped Al alloy foam[J]. 材料研究学报, 2009, 23(1): 27-31.
[10] BAN Lili; HUI Weijun; YONG Qilong; WENG Yuqing; DONG Han. High cycle fatigue behavior of medium–carbon trip steel at different tensile strength levels[J]. 材料研究学报, 2008, 22(6): 629-633.
[11] QIN Shuyi; LIU Shikai; YANG Chuan;ZHANG Jixi; ZHANG Xiyan (Southwest Jiaotong University)(Correspondent:Department of Materials Engineering;Southwest Jiaotong University;Chengdu 610031). ANALYSIS ON ROOM TEMPERATURE TENSILE STRENGTH OF δ-Al_2O_3, FIBER / Al-12Si COMPOSITE[J]. 材料研究学报, 1996, 10(4): 445-448.
[12] GUAN Yunlin;GUO Jintang;SHAO Lei;YAO Kangde(Tianjin University)(Correspondent:GUAN Yunlin;Department of Applied Chemistry;Tianjin University;Tianjin 300072). INVESTIGATION ON PHASE BEHAVIOR OF (PU / EP)IPN AND BREAKING TENSILE STRENGTH[J]. 材料研究学报, 1996, 10(3): 313-318.
[13] ZHU Chuanfeng;WANG Xinwen;BAI Chunli(Institute of Chemistry;Chinese Academy of Sciences)ZHAO Genxiang(Institute of Coal-Coke Chemistry;Chinese Academy of Sciences)(Correspondent:ZHU Chuanfeng;Institute of Chemistry;Chinese Academy of Sciences;Beijing 1000. AFM STUDY OF STRUCTURES OF HIGH CRYSTALLITE GRAPHITE FILM[J]. 材料研究学报, 1996, 10(3): 285-288.
[14] SONG Mingshi HU Guixian CHEN Han (Beijing Institute of Chemical Technology). THE RELATIONSHIP BETWEEN THE MECHANICAL PROPERTIES AND PROCESSING FOR SELF-REINFORCED POLYMERS4.Comparison of the Theory of Tensile Strength with Experiments[J]. 材料研究学报, 1993, 7(3): 252-257.
[15] CHU Shuangjie (Northwestern Polytechnical University)WANG Haowei (Shanghai Jiaotong University). INFLUENCE OF C-Si GRADIENT COATING ON PROPERTIES OF CARBON FIBER[J]. 材料研究学报, 1993, 7(3): 268-272.
No Suggested Reading articles found!