Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (7): 489-495    DOI: 10.11901/1005.3093.2014.417
Current Issue | Archive | Adv Search |
Vertical Shearing Fracture Behavior of Carbon Fiber Reinforced Plastic of Different Status
Yuqin GUO(),Yan YANG,Minhang SUN,Pengpeng TANG
School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
Cite this article: 

Yuqin GUO,Yan YANG,Minhang SUN,Pengpeng TANG. Vertical Shearing Fracture Behavior of Carbon Fiber Reinforced Plastic of Different Status. Chinese Journal of Materials Research, 2015, 29(7): 489-495.

Download:  HTML  PDF(2736KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon fiber reinforced plastic (CFRP) was fabricated by alternately laying epoxy resin films and carbon fiber fabrics for a desired number of layers. The prepared CFRP could be in different status such as dry, soft, wet and solid corresponding to ambient temperature, and temperatures of glass transition and melting and curing of resin films, respectively. Blanking tests were performed by means of a home made shearing blanking die to characterize the vertical shearing fracture for the prepared CFRP of different status. Results show that the vertical shearing fracture of the dry/solid, soft and wet CFRPs present characteristics of typical nonlinear deformation, discontinuous and delaminating fracture, and the required blanking forces increase in turn. Moreover, blanking with a small gap, proper angle and high speed may be helpful to relieve the discontinuous fracture of partial carbon fiber yarns and promote the delaminating fracture of CFRPs to be much concentrated and stability.

Key words:  composites      CFRP      vertical shearing      fracture behavior      cutting     
Received:  11 August 2014     
Fund: *Supported by National Natural Science Foundation of China No.51105180.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.417     OR     https://www.cjmr.org/EN/Y2015/V29/I7/489

Fig.1  Picture of cutting die structure and installation on universal testing machine
No. Carbon fiber twill layer Number of resin film pieces Gap /mm Velocity /mm/min Tool angle Temperature /℃
1 1 0 0.1 60 60° 25
2 2 0 0.1 60 60° 25
3 3 0 0.1 60 60° 25
4 4 0 0.1 60 60° 25
5 2 15 0.1 60 60° 25
6 3 30 0.1 60 60° 25
7 4 45 0.1 60 60° 25
8 3 30 0.1 60 60° 80
9 3 30 0.1 60 60° 110
10 3 30 0.1 60 60° 150
11 3 30 0.05 60 60° 110
12 3 30 0.2 60 60° 110
13 3 30 0.5 60 60° 110
14 3 30 0.8 60 60° 110
15 3 30 0.1 30 60° 110
16 3 30 0.1 120 60° 110
17 3 30 0.1 240 60° 110
18 3 30 0.1 60 45° 110
19 3 30 0.1 60 20° 110
Table 1  Vertical shearing experimental scheme of CFRP
Fig.2  Load-time curves of CFRP in shearing fracture process under different temperature
Fig.3  Curves of carbon fiber twill with different layers in shearing fracture process, (a) load-time curve, (b) stress-strain curve
Fig.4  Load-time curves of CFRP part with or without resin film in shearing fracture process
Fig.5  Relationship between CFRP part’s maximum cutting force in sharing fracture process and resin film layer
Fig.6  Load-time curves of CFRP part in shearing fracture process for different gap
Fig.7  Relationship between CFRP part’s maximum cutting force in sharing fracture process and gap
Fig.8  Load-time curves of CFRP part in shearing fracture process for different cutting velocity
Fig.9  Relationship between CFRP part’s maximum cutting force in sharing fracture process and cutting velocity
Fig.10  Load-time curves of CFRP part in shearing fracture process for different tool angle
Fig.11  Relationship between CFRP part’s maximum cutting force in sharing fracture process and tool angle
1 DU Shanyi,Advanced composite materials and aerospace engineering, Acta Materiae Compositae Sinica, 24(1), 1(2007)
1 (杜善义, 先进复合材料与航空航天, 复合材料学报, 24(1), 1(2007))
2 CHEN Shaojie,Application of advanced composites on automotive filed, Hi-Tech Fiber & Application, 36(1), 11(2011)
2 (陈绍杰, 先进复合材料在汽车领域的应用, 高科技纤维与应用, 36(1), 11(2011))
3 CHEN Lijun,WU Fengqin, ZHANG Xinyu, YANG Jian, LI Rongxian, Application and molding techniques of EP/CF composite, Engineering Plastics Application, 35(10), 77(2007)
3 (陈立军, 武凤琴, 张欣宇, 杨 建, 李荣先, 环氧树脂/碳纤维复合材料的成型工艺与应用, 工程塑料应用, 35(10), 77(2007))
4 WANG Xueming,XIE Fuyuan, LI Min, DAI Di, WANG Fei, ZHANG Zuoguang, Effect rules of complex structure on manufacturing defects for composites in autoclave molding, Acta Aeronautica ET Astronautica Sinica, 30(4), 757(2009)
4 (王雪明, 谢富原, 李 敏, 戴 棣, 王 菲, 张佐光, 热压罐成型复合材料复杂结构对制造缺陷的影响规律, 航空学报, 30(4), 757(2009))
5 HUANG Jiakang, Forming Technology of Composite Material and Its Application (BeiJing, Chemical Industry Press, 2011)p.183
5 (183)
6 ZHANG Xiuyan,YANG Zhizhong, WANG Chunyu, Process and application of resin film infusion (RFI), Fiber Composites, 2, 39(2004)
6 (张秀艳, 杨志忠, 王春雨, 树脂膜渗透(RFI)成型工艺及其应用, 纤维复合材料, 2, 39(2004))
7 Yuqin Guo,Zhao Meng, Fuzhu Li, Wei Chen, Juan Guo, An integrated manufacturing process of CFRP parts based on RFI and cutting process, Applied Mechanics and Materials, 365, 1090(2013)
8 J. P. Quinn, A. T. Mcllhagger, R. Mcllhagger,Examination of the failure of 3D woven composites, Composites: Part A, 39, 273(2008)
9 F. Aymerich, P. Priolo,Characterization of fracture modes in stitched and unstitched cross-ply laminates subjected to low-velocity impact and compression after impact loading, International Journal of Impact Engineering, 35, 591(2008)
10 A. Plumtree, M. Melo, J. Dahl,Damage evolution in a [±45°] CFRP laminate under block loading conditions, International Journal of Fatigue, 32, 139(2010)
11 M. R. Esfahani, M. R. Kianoush, A. R. Moradi,Punching shear strength of interior slab-column connections strengthened with carbon fiber reinforced polymer sheets, Engineering Structures, 31, 1535(2009)
12 BAO Yongjie,GAO Hang, Drilling disfigurements formation analysis and solution of CFRP, Journal of Material Engineering, S2, 254(2009)
12 (鲍永杰, 高 航, 碳纤维复合材料构件加工缺陷与高效加工对策, 材料工程, S2, 254(2009))
13 I. S. Shyha, D.K. Aspinwall, S.L. Soo, S. Bradley,Drill geometry and operating effects when cutting small diameter holes in CFRP, Machine Tools and Manufacture, 49(12), 1008(2009)
14 ZHANG Lingling,JIANG Zhaohua, ZHANG Wei, PAN Yong, WANG Jianchao, HAN Hua, A review of laser processing fiber -reinforced flexible composite material, Applied Laser, 32(3), 238(2012)
14 (张玲玲, 姜兆华, 张 伟, 潘 涌, 王健超, 韩 华, 超强度纤维柔性复合材料激光加工工艺研究, 应用激光, 32(3), 238(2012))
15 Dirk Herzog,Peter Jaeschke, Oliver Meier, Heinz Haferkamp, Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP, Machine Tools and Manufacture, 48(12), 1464(2008)
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[7] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[8] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[9] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[10] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[11] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[12] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[13] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[14] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[15] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
No Suggested Reading articles found!