Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (12): 949-954    DOI: 10.11901/1005.3093.2014.328
Current Issue | Archive | Adv Search |
Synthesis and Properties of Nano-LiFePO4/C Composites
Xianzhong QIN1,Gai YANG2,Feng MA1,**(),Feipeng CAI2,Suqin HU2
1. Institute of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353
2. Key Laboratory of Biomass Gasification Technology, Shandong Institute of Energy Sciences, Jinan 250014
Cite this article: 

Xianzhong QIN,Gai YANG,Feng MA,Feipeng CAI,Suqin HU. Synthesis and Properties of Nano-LiFePO4/C Composites. Chinese Journal of Materials Research, 2014, 28(12): 949-954.

Download:  HTML  PDF(3448KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

FePO4·H2O precursor was synthesized by the co-precipitation method from raw materials Fe (NO3)3·9H2O, H3PO4 and NH3·H2O, which then was modified by surfactants hexadecyl trim ethyl ammonium bromide (CTAB) and polyethylene glycol (PEG). Finally LiFePO4 /C composites were synthesized with the as-prepared FePO4·2H2O, Li2CO3 and sucrose as raw materials. The LiFePO4 /C composites were characterized by means of X-ray diffractormeter (XRD) and scanning electron microscope (SEM). Their performance was determined by cyclic voltammograms (CV) and electrochemical measurement.. The results show that the presence of surfactants CTAB and PEG may be beneficial to suppressing the agglomeration of the particles of the composites; thereby their electrochemical properties were enhanced. The LiFePO4/C particles synthesized with surfactant CTAB modified FePO42H2O exhibit excellent dispersive ability with particle mean size 170nm and excellent cycle performance and rate properties i.e. a discharge specific capacity 159.8 mAhg-1 at 0.1C as well as a value higher than 132.4 mAhg-1 even at 10C.

Key words:  composites      surfactants      controlled crystallization method      carbon thermal reduction      lithium iron phosphate     
Received:  06 July 2014     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.328     OR     https://www.cjmr.org/EN/Y2014/V28/I12/949

Fig.1  XRD spectra of FePO4 after pretrea
Fig.2  XRD spectra of LiFePO4/C
Fig.3  SEM images of synthesized FePO4 (a: FPO; b: FPO-PEG; c: FPO-CTAB)
Fig.4  SEM images of synthesized LiFePO4/C (a: LFP/C; b: LFP/C-PEG; c: LFP/C-CTAB)
Fig.5  Initial discharge curves of LiFePO4/C at 0.1C rate
Fig.6  Specific capacity-Cycle performance of LiFePO4/C at different C-rates
Fig.7  Discharge voltage-Cycle performance of LiFePO4/C at different C-rates
1 WANG Yuhong,MEI Rui, YANG Xiaomin, Enhanced electrochemical properties of LiFePO4 /C synthesized with two kinds of carbon sources, PEG-4000 (organic) and Super p (inorganic), Ceramics International, 40(6), 8439(2014)
2 LV Yiju,SU Jing, LONG Yunfei, CUI Xiaoru, LV Xiaoyan, WEN Yanxuan, Effects of ball to powder weight ratio on the performance of LiFePO4 /C prepared by wet milling assisted carbothermal reduction, Powder Technology, 253(12), 467(2014)
3 Rafael Trócoli,Sylvain Franger, Manuel Cruz, Julián Morales, Jesús Santos-Pe?a, Improving the electrochemical properties of nanosized LiFePO4 based electrode by carbon doping, Electrochemical Acta, 135(20), 558(2014)
4 YU Yang,LI Qianwen, MA Yanmei, ZHANG Xing, ZHU Yongchun, QIAN Yitai, Shape controlled hydrothermal synthesis and characterization of LiFePO4 for lithium ion batteries, Journal of nanoscience and nanotechnology, 13(2), 1515(2013)
5 Shahid Raza, Murugavel Sevi. Particle size dependent confinement lattice strain effects in LiFePO4, Physical chemistry, 15(43), 809(2013)
6 Ondrej Cech, Jorge E. Thomas,Marie Sedlarikova, Andrea Fedorkova, Jiri Vondrak, Mario Sergio Moreno, Arnaldo Visintin. Performance improvement on LiFePO4/C composite cathode for lithium-ion batteries. Solid State Sciences, 20(2), 110(2013)
7 PAN Maosen,ZHOU Zhentao, Carbon rich surface of LiFePO4 grain enhancing its rate capability, Materials Letters, 65(7), 1131(2011)
8 Sung Woo Oh,Seung-Taek Myung, Seung-Min Oh, Kyu Hwan Oh, Khalil Amine, Bruno Scrosati and Yang-Kook Sun, Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries, Advanced Materials, 22(43), 4842(2010)
9 CHEN Jin,YAN Liuming, Nano-layered LiFePO4 particles converted from nano-layered ferrous phenyl phosphate templates, Journal of Power Sources, 209(12), 7(2012)
10 Kim JunIl,Roh Kwang Chul, Lee JaeWon, Nanocomposite of LiFePO4 and mesoporous carbon for high power cathode of lithium rechargeable batterie, Journal of Nanoscience and Nanotechnology, 12(11), 75(2013)
11 Cattoz B,Cosgrove T, Crossman M, Surfactant mediate desorptin of polymer from the nanoparticle interface, Langmuir: the ACS Journal of Surfaces and Colloides, 28(5), 2485(2012)
12 Sun C S,Zhang Y, Zhang X J, Zhou Z, Structural and electrochemical properties of Cl-doped LiFePO4/C, Journal of Power Sources, 195(11), 3680(2010)
13 Cho Yungda,Fey George Tingkuo, Kao Hsienming, The effect of carbon coating thickness on the capacity of LiFePO4 /C composite cathodes, Journal of Power Sources, 189(1), 256(2009)
14 Ni Jiangfeng,Morishita Masanori, Kawabe Yoshiteru, Watada Masaharu, Takeichi Nobuhiko, Sakai Tetsuo, Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid, Journal of Power Sources, 195(9), 2877(2010)
15 Peng Zhongdong,Tang Daichun, Hu Guorong, Du Ke, Cao Yanbing, Synthesis and?electrochemical?performance of?LiFePO4/C by homogeneous precipitation?method, The Chinese?Journal of Nonferrous?Metals, 319(7), 1320(2012)
15 (彭忠东, 唐代春, 胡国荣, 杜 柯, 曹雁冰. 均匀沉淀法制备LiFePO4/C及其电化学性能. 中国有色金属学报, 319(7), 1320(2012))
16 Jung Min Kim,Gi-Ra Yi, Soon Chang Lee, Sang Moon Lee, Younghun Jo, Hyun-Wook Kang, Gaehang Lee, Hae Jin Kim, Surfactant-assisted synthesis of hybrid lithium iron phosphate nanoparticles for enhancing electrochemical performance, Journal of Solid State Chemistry, 197(13), 53(2013)
17 CHENG Ke,WANG Xiaodong, LAN Yachao, YANG Jianjun, WU Zhishen, ZHANG Zhijun, Preparation and characterization of LiFePO4/C cathode materials with high-rate performance, Acta Materiae Compositae Sinica, 30(1), 136(2013)
17 (程 科, 王晓冬, 兰亚超, 杨建军, 吴志申, 张治军, 高倍率性能磷酸亚铁锂/碳正极材料的制备与表征, 复合材 料学报, 30(1), 136(2013))
18 Wang Guan,Preparation and performance study of LiFePO4 as cathode material for lithium ion battery, PhD Thesis, Shanghai: Fudan University, 2006
18 (王 冠, 锂离子电池正极材料LiFePO4制备及其性能研究, 博士学位论文, 上海复旦大学, 2006)
19 Whittingham M Stanley,Song Yanning, Lutta Samuel, Y. Zavalij Peter, Chernova Natasha A, Some transition metal (oxy) phosphates and vanadium oxides for lithium batteries, Journal of Materials Chemistry, 15(3), 3362(2005)
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
No Suggested Reading articles found!