|
|
制备条件对WS2 中1T/2H相的影响 |
任学昌, 杨镇瑜( ), 冯浩, 安菊, 曹鹏飞, 付宁 |
兰州交通大学环境与市政工程学院 兰州 730070 |
|
Influence of Preparation Process Parameters on Relative Amount of Two-phase 1T/2H and Performance of WS2 |
REN Xuechang, YANG Zhenyu( ), FENG Hao, AN Ju, CAO Pengfei, FU Ning |
School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China |
引用本文:
任学昌, 杨镇瑜, 冯浩, 安菊, 曹鹏飞, 付宁. 制备条件对WS2 中1T/2H相的影响[J]. 材料研究学报, 2024, 38(10): 791-800.
Xuechang REN,
Zhenyu YANG,
Hao FENG,
Ju AN,
Pengfei CAO,
Ning FU.
Influence of Preparation Process Parameters on Relative Amount of Two-phase 1T/2H and Performance of WS2[J]. Chinese Journal of Materials Research, 2024, 38(10): 791-800.
1 |
Chen Y D, Shao Y, Li O Y, et al. WS2-cocatalyzed peroxymonosulfate activation via an enhanced Fe(III)/Fe(II) cycle toward efficient organic pollutant degradation [J]. Chem. Eng. J., 2022, 442: 135961
|
2 |
Li G F, Ren Z Q, Wang Y, et al. Molecular spectroscopy and docking simulation revealed the binding mechanism of phenol onto anammox sludge extracellular polymeric substances [J]. Sci. Total. Environ., 2022, 830: 154733
|
3 |
Singh V, Joung D, Zhai L, et al. Graphene based materials: past, present and future [J]. Prog. Mater. Sci., 2011, 56(8): 1178
|
4 |
Song X F, Guo Z X, Zhang Q C, et al. Progress of large-scale synthesis and electronic device application of two-dimensional transition metal dichalcogenides [J]. Small, 2017, 13(35): 1700098
|
5 |
Gutiérrez H R, Perea-López N, Elías A L, et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers [J]. Nano Lett., 2013, 13(8): 3447
doi: 10.1021/nl3026357
pmid: 23194096
|
6 |
Choi W, Choudhary N, Han G H, et al. Recent development of two-dimensional transition metal dichalcogenides and their applications [J]. Mater. Today, 2017, 20(3): 116
|
7 |
Manthiram A. An outlook on lithium ion battery technology [J]. ACS Cent. Sci., 2017, 3(10): 1063
|
8 |
Xu M S, Liang T, Shi M M, et al. Graphene-like two-dimensional materials [J]. Chem. Rev., 2013, 113(5): 3766
doi: 10.1021/cr300263a
pmid: 23286380
|
9 |
Kang K, Xie S E, Huang L J, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity [J]. Nature, 2015, 520(7549): 656
|
10 |
Tan C L, Zhang H. Two-dimensional transition metal dichalcogenide nanosheet-based composites [J]. Chem. Soc. Rev., 2015, 44(9): 2713
doi: 10.1039/c4cs00182f
pmid: 25292209
|
11 |
Tan C, Li Y Y, Wang H H, et al. Preparation of g-C3N4/Ag/TiO2NTs and photocatalytic degradation of ceftazidine [J]. Chin. J. Mater. Res., 2022, 36(5): 392
|
11 |
谭 冲, 李媛媛, 王欢欢 等. g-C3N4/Ag/TiO2NTs的制备及其对西维因的光催化降解 [J]. 材料研究学报, 2022, 36(5): 392
|
12 |
Raza F, Yim D, Park J H, et al. Structuring Pd nanoparticles on 2H-WS2 nanosheets induces excellent photocatalytic activity for cross-coupling reactions under visible light [J]. J. Am. Chem. Soc., 2017, 139(41): 14767
|
13 |
Liu Z Q, Nie K K, Qu X Y, et al. General bottom-Up colloidal synthesis of nano-monolayer transition-metal dichalcogenides with high 1T'-phase purity [J]. J. Am. Chem. Soc., 2022, 144(11): 4863
doi: 10.1021/jacs.1c12379
pmid: 35258958
|
14 |
Li Y J, Ding L, Yin S J, et al. Photocatalytic H2 evolution on TiO2 assembled with Ti3C2 MXene and metallic 1T-WS2 as Co-catalysts [J]. Nano-Micro Lett., 2020, 12(1): 6
|
15 |
Loh T A J, Chua D H C. Origin of hybrid 1T- and 2H-WS2 ultrathin layers by pulsed laser deposition [J]. J. Phys. Chem., 2015, 119C(49) : 27496
|
16 |
Leong S X, Mayorga-Martinez C C, Chia X, et al. 2H→1T phase change in direct synthesis of WS2 nanosheets via solution-based electrochemical exfoliation and their catalytic properties [J]. ACS Appl. Mater. Interfaces, 2017, 9(31): 26350
|
17 |
Yi J J, She X J, Song Y H, et al. Solvothermal synthesis of metallic 1T-WS2: a supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution [J]. Chem. Eng. J., 2018, 335: 282
|
18 |
Piao M X, Yang Z N, Liu F, et al. Crystal phase control synthesis of metallic 1T-WS2 nanosheets incorporating single walled carbon nanotubes to construct superior microwave absorber [J]. J. Alloys Compd., 2020, 815: 152335
|
19 |
Khan A, Khan I, Khan M Y, et al. Facile synthesis of 1T-WS2/graphite nanocomposite for efficient solar-driven oxygen evolution reaction [J]. Int. J. Hydrogen Energy, 2020, 45(45): 24045
|
20 |
Zhou K, Ke P L, Wang A Y, et al. Electrochemical properties of nitrogen-doped DLC films deposited by PECVD technique [J]. Chin. J. Mater. Res., 2014, 28(3): 161
doi: 10.11901/1005.3093.2013.797
|
20 |
周 凯, 柯培玲, 汪爱英 等. PECVD制备掺氮类金刚石薄膜的电化学特性 [J]. 材料研究学报, 2014, 28(3): 161
|
21 |
Yao Y, Jin Z W, Chen Y H, et al. Graphdiyne-WS2 2D-Nanohybrid electrocatalysts for high-performance hydrogen evolution react-ion [J]. Carbon, 2018, 129: 228
|
22 |
Ding W, Hu L, Dai J M, et al. Highly ambient-stable 1T-MoS2 and 1T-WS2 by hydrothermal synthesis under high magnetic fields [J]. ACS Nano, 2019, 13(2): 1694
doi: 10.1021/acsnano.8b07744
pmid: 30649862
|
23 |
Kelly A G, Vega-Mayoral V, Boland J B, et al. Whiskey-phase exfoliation: exfoliation and printing of nanosheets using Irish whiskey [J]. 2D Mater., 2019, 6(4): 045036
|
24 |
Loo A H, Bonanni A, Sofer Z, et al. Exfoliated transition metal dichalcogenides (MoS2, MoSe2, WS2, WSe2): an electrochemical impedance spectroscopic investigation [J]. Electrochem. Commun., 2015, 50: 39
|
25 |
Shi Y M, Li H N, Li L J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques [J]. Chem. Soc. Rev., 2015, 44(9): 2744
|
26 |
Ding S Y, Ren X C, Chen R H, et al. Efficient degradation of Phenol by 1T/2H-MoS2/CuFe2O4 activated peroxymonosulfate and mechanism research [J]. Appl. Surf. Sci., 2023, 612: 155931
|
27 |
Mayorga-Martinez C C, Ambrosi A, Eng A Y S, et al. Metallic 1T-WS2 for selective impedimetric vapor sensing [J]. Adv. Funct. Mater., 2015, 25(35): 5611
|
28 |
Mahler B, Hoepfner V, Liao K, et al. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution [J]. J. Am. Chem. Soc., 2014, 136(40): 14121
|
29 |
Liu Q, Li X L, Xiao Z R, et al. Stable metallic 1T-WS2 nanoribbons intercalated with ammonia ions: the correlation between structure and electrical/optical properties [J]. Adv. Mater., 2015, 27(33): 4837
|
30 |
Yang Z, Ren X, Ding S, et al. Modulation of morphology and phase of magnetically separable 1T-WS2/CuFe2O4 heterojunctions for acceleration of peroxymonosulfate decomposition for rapid degradation of phenol [J]. Separation and Purification Technology, 2024, 11(348): 127635
|
31 |
Paudel D R, Pan U N, Singh T I, et al. Fe and P doped 1T-phase enriched WS2 3D-dendritic nanostructures for efficient overall water splitting [J]. Appl. Catal., 2021, 286B: 119897
|
32 |
Yang C Y, Gong N, Chen T, et al. Enhanced catalytic conversion of polysulfides using high-percentage 1T-phase metallic WS2 nanosh-eets for Li-S batteries [J]. Green Energy Environ., 2022, 7(6): 1340
|
33 |
Ren X, Yang Z, Pang X, et al. The preparation and characterization of WS2 nanomaterials with different morphologies and the mechanistic study of peroxymonosulfate activation for phenol degradation [J]. Journal of Environmental Chemical Engineering, 2024, 12(5): 114082
|
34 |
Yao Y, Dong W B, Zhao Z, et al. Vertically aligned 1T-WS2 nanosheets supported on carbon cloth as a high-performance flexible photocatalyst [J]. Colloids Surf., 2022, 649A: 129533
|
35 |
Piao M, Chu J, Wang X, et al. Hydrothermal synthesis of stable metallic 1T phase WS2 nanosheets for thermoelectric application [J]. Nanotechnology, 2018, 29(2): 025705
|
36 |
Woods J M, Jung Y, Xie Y J, et al. One-step synthesis of MoS2/WS2 layered heterostructures and catalytic activity of defective transition metal dichalcogenide films [J]. ACS Nano, 2016, 10(2): 2004
doi: 10.1021/acsnano.5b06126
pmid: 26836122
|
37 |
Tong X, Qi Y H, Chen J, et al. Supercritical CO2-assisted reverse-micelle-induced solution-phase fabrication of two-dimensional metallic 1T-MoS2 and 1T-WS2 [J]. ChemNanoMat, 2017, 3(7): 466
|
38 |
Bi F K, Zhang X D, Chen J F, et al. Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation [J]. Appl. Catal., 2020, 269B: 118767
|
39 |
Koçak Y, Akaltun Y, Gür E. Magnetron sputtered WS2; optical and structural analysis [J]. J. Phys.: Conf. Ser., 2016, 707: 012028
|
40 |
Ma C, Feng S, Zhou J M, et al. Enhancement of H2O2 decomposition efficiency by the co-catalytic effect of iron phosphide on the Fenton reaction for the degradation of methylene blue [J]. Appl. Catal., 2019, 259B: 118015
|
41 |
Zhu Q, Chen W Z, Cheng H, et al. WS2 nanosheets with highly-enhanced electrochemical activity by facile control of sulfur vacancies [J]. ChemCatChem, 2019, 11(11): 2667
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|