Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (10): 791-800    DOI: 10.11901/1005.3093.2023.488
  研究论文 本期目录 | 过刊浏览 |
制备条件对WS21T/2H相的影响
任学昌, 杨镇瑜(), 冯浩, 安菊, 曹鹏飞, 付宁
兰州交通大学环境与市政工程学院 兰州 730070
Influence of Preparation Process Parameters on Relative Amount of Two-phase 1T/2H and Performance of WS2
REN Xuechang, YANG Zhenyu(), FENG Hao, AN Ju, CAO Pengfei, FU Ning
School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
引用本文:

任学昌, 杨镇瑜, 冯浩, 安菊, 曹鹏飞, 付宁. 制备条件对WS21T/2H相的影响[J]. 材料研究学报, 2024, 38(10): 791-800.
Xuechang REN, Zhenyu YANG, Hao FENG, Ju AN, Pengfei CAO, Ning FU. Influence of Preparation Process Parameters on Relative Amount of Two-phase 1T/2H and Performance of WS2[J]. Chinese Journal of Materials Research, 2024, 38(10): 791-800.

全文: PDF(18600 KB)   HTML
摘要: 

用简单的溶剂热法制备1T/2H相WS2纳米材料,改变前驱体中WCl6/TAA的摩尔比和反应温度调控WS2中1T相的含量。用X射线衍射(XRD)分析、X射线光电子能谱分析(XPS)和扫描电镜(SEM)观察探讨反应条件对产物中1T相含量的影响,并用共催化降解实验证实了W-200 (W-12)有最佳的助催化性能。用透射电镜(TEM)观察和拉曼光谱分析证实了W-200具有最佳的1T相含量。对比反应前后材料的状态发现,WS2在使用过程中会产生硫空位和具有优异的可循环使用性。

关键词 金属材料过渡金属硫化物1T/2H-WS2硫空位    
Abstract

Transitional metal dichalcogenides (TMDs) materials have attracted great interest as a potential multifunctional material. However, the synthesis method of 1T-WS2 is limited and complex. In this paper, 1T/2H phase WS2 nanomaterials were prepared by a simple solvothermal method. For the first time, the content of 1T phase in WS2 could be adjusted by controlling the ratio of WCl6/TAA in the precursor and the reaction temperature. The effect of reaction conditions on the content of 1T phase in the product was confirmed by XRD, XPS and SEM, while the co-catalytic degradation test result confirmed that W-200 (W-12) had the best co-catalytic effect. Finally, TEM and Raman spectroscopy confirmed that W-200 had the best content of the 1T phase. By comparing the state of the material before and after the reaction, it is proved that sulfur vacancies will be generated during the use of WS2 and it has excellent recyclability.

Key wordsmetallic materials    transition metal sulfides    1T/2H-WS2    sulfur vacancies
收稿日期: 2023-10-07     
ZTFLH:  TB31  
基金资助:兰州交通大学青年学者科学基金(2022044);甘肃省优秀研究生“创新之星”资助项目(2023CXZX-562)
通讯作者: 杨镇瑜,657501365@qq.com,研究方向为水处理高级氧化技术
Corresponding author: YANG Zhenyu, Tel: 17693109113, E-mail: 657501365@qq.com
作者简介: 任学昌,男,1970年生,教授,博士
图1  不同WCl6/TAA制备条件下WS2的XRD谱
图2  不同WCl6/TAA比条件下WS2的SEM照片
图3  不同参比下WS2的XPS谱
图4  不同WCl6/TAA比条件下WS2对苯酚的助催化降解性能及其反应速率常数
图5  在不同温度制备的WS2的XRD谱
图6  在不同温度制备的WS2的SEM照片
图7  在相同温度制备的WS2的XPS谱
图8  在不同温度制备的WS2对苯酚的助催化降解性能及其反应速率常数
图9  W-200的EDS图像
图10  W-200的高分辨率投射图像和晶格间距
图11  W-200的拉曼光谱
图12  W-200反应前后的SEM图像
图13  W-200反应前后的XRD谱和Raman谱
1 Chen Y D, Shao Y, Li O Y, et al. WS2-cocatalyzed peroxymonosulfate activation via an enhanced Fe(III)/Fe(II) cycle toward efficient organic pollutant degradation [J]. Chem. Eng. J., 2022, 442: 135961
2 Li G F, Ren Z Q, Wang Y, et al. Molecular spectroscopy and docking simulation revealed the binding mechanism of phenol onto anammox sludge extracellular polymeric substances [J]. Sci. Total. Environ., 2022, 830: 154733
3 Singh V, Joung D, Zhai L, et al. Graphene based materials: past, present and future [J]. Prog. Mater. Sci., 2011, 56(8): 1178
4 Song X F, Guo Z X, Zhang Q C, et al. Progress of large-scale synthesis and electronic device application of two-dimensional transition metal dichalcogenides [J]. Small, 2017, 13(35): 1700098
5 Gutiérrez H R, Perea-López N, Elías A L, et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers [J]. Nano Lett., 2013, 13(8): 3447
doi: 10.1021/nl3026357 pmid: 23194096
6 Choi W, Choudhary N, Han G H, et al. Recent development of two-dimensional transition metal dichalcogenides and their applications [J]. Mater. Today, 2017, 20(3): 116
7 Manthiram A. An outlook on lithium ion battery technology [J]. ACS Cent. Sci., 2017, 3(10): 1063
8 Xu M S, Liang T, Shi M M, et al. Graphene-like two-dimensional materials [J]. Chem. Rev., 2013, 113(5): 3766
doi: 10.1021/cr300263a pmid: 23286380
9 Kang K, Xie S E, Huang L J, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity [J]. Nature, 2015, 520(7549): 656
10 Tan C L, Zhang H. Two-dimensional transition metal dichalcogenide nanosheet-based composites [J]. Chem. Soc. Rev., 2015, 44(9): 2713
doi: 10.1039/c4cs00182f pmid: 25292209
11 Tan C, Li Y Y, Wang H H, et al. Preparation of g-C3N4/Ag/TiO2NTs and photocatalytic degradation of ceftazidine [J]. Chin. J. Mater. Res., 2022, 36(5): 392
11 谭 冲, 李媛媛, 王欢欢 等. g-C3N4/Ag/TiO2NTs的制备及其对西维因的光催化降解 [J]. 材料研究学报, 2022, 36(5): 392
12 Raza F, Yim D, Park J H, et al. Structuring Pd nanoparticles on 2H-WS2 nanosheets induces excellent photocatalytic activity for cross-coupling reactions under visible light [J]. J. Am. Chem. Soc., 2017, 139(41): 14767
13 Liu Z Q, Nie K K, Qu X Y, et al. General bottom-Up colloidal synthesis of nano-monolayer transition-metal dichalcogenides with high 1T'-phase purity [J]. J. Am. Chem. Soc., 2022, 144(11): 4863
doi: 10.1021/jacs.1c12379 pmid: 35258958
14 Li Y J, Ding L, Yin S J, et al. Photocatalytic H2 evolution on TiO2 assembled with Ti3C2 MXene and metallic 1T-WS2 as Co-catalysts [J]. Nano-Micro Lett., 2020, 12(1): 6
15 Loh T A J, Chua D H C. Origin of hybrid 1T- and 2H-WS2 ultrathin layers by pulsed laser deposition [J]. J. Phys. Chem., 2015, 119C(49) : 27496
16 Leong S X, Mayorga-Martinez C C, Chia X, et al. 2H→1T phase change in direct synthesis of WS2 nanosheets via solution-based electrochemical exfoliation and their catalytic properties [J]. ACS Appl. Mater. Interfaces, 2017, 9(31): 26350
17 Yi J J, She X J, Song Y H, et al. Solvothermal synthesis of metallic 1T-WS2: a supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution [J]. Chem. Eng. J., 2018, 335: 282
18 Piao M X, Yang Z N, Liu F, et al. Crystal phase control synthesis of metallic 1T-WS2 nanosheets incorporating single walled carbon nanotubes to construct superior microwave absorber [J]. J. Alloys Compd., 2020, 815: 152335
19 Khan A, Khan I, Khan M Y, et al. Facile synthesis of 1T-WS2/graphite nanocomposite for efficient solar-driven oxygen evolution reaction [J]. Int. J. Hydrogen Energy, 2020, 45(45): 24045
20 Zhou K, Ke P L, Wang A Y, et al. Electrochemical properties of nitrogen-doped DLC films deposited by PECVD technique [J]. Chin. J. Mater. Res., 2014, 28(3): 161
doi: 10.11901/1005.3093.2013.797
20 周 凯, 柯培玲, 汪爱英 等. PECVD制备掺氮类金刚石薄膜的电化学特性 [J]. 材料研究学报, 2014, 28(3): 161
21 Yao Y, Jin Z W, Chen Y H, et al. Graphdiyne-WS2 2D-Nanohybrid electrocatalysts for high-performance hydrogen evolution react-ion [J]. Carbon, 2018, 129: 228
22 Ding W, Hu L, Dai J M, et al. Highly ambient-stable 1T-MoS2 and 1T-WS2 by hydrothermal synthesis under high magnetic fields [J]. ACS Nano, 2019, 13(2): 1694
doi: 10.1021/acsnano.8b07744 pmid: 30649862
23 Kelly A G, Vega-Mayoral V, Boland J B, et al. Whiskey-phase exfoliation: exfoliation and printing of nanosheets using Irish whiskey [J]. 2D Mater., 2019, 6(4): 045036
24 Loo A H, Bonanni A, Sofer Z, et al. Exfoliated transition metal dichalcogenides (MoS2, MoSe2, WS2, WSe2): an electrochemical impedance spectroscopic investigation [J]. Electrochem. Commun., 2015, 50: 39
25 Shi Y M, Li H N, Li L J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques [J]. Chem. Soc. Rev., 2015, 44(9): 2744
26 Ding S Y, Ren X C, Chen R H, et al. Efficient degradation of Phenol by 1T/2H-MoS2/CuFe2O4 activated peroxymonosulfate and mechanism research [J]. Appl. Surf. Sci., 2023, 612: 155931
27 Mayorga-Martinez C C, Ambrosi A, Eng A Y S, et al. Metallic 1T-WS2 for selective impedimetric vapor sensing [J]. Adv. Funct. Mater., 2015, 25(35): 5611
28 Mahler B, Hoepfner V, Liao K, et al. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution [J]. J. Am. Chem. Soc., 2014, 136(40): 14121
29 Liu Q, Li X L, Xiao Z R, et al. Stable metallic 1T-WS2 nanoribbons intercalated with ammonia ions: the correlation between structure and electrical/optical properties [J]. Adv. Mater., 2015, 27(33): 4837
30 Yang Z, Ren X, Ding S, et al. Modulation of morphology and phase of magnetically separable 1T-WS2/CuFe2O4 heterojunctions for acceleration of peroxymonosulfate decomposition for rapid degradation of phenol [J]. Separation and Purification Technology, 2024, 11(348): 127635
31 Paudel D R, Pan U N, Singh T I, et al. Fe and P doped 1T-phase enriched WS2 3D-dendritic nanostructures for efficient overall water splitting [J]. Appl. Catal., 2021, 286B: 119897
32 Yang C Y, Gong N, Chen T, et al. Enhanced catalytic conversion of polysulfides using high-percentage 1T-phase metallic WS2 nanosh-eets for Li-S batteries [J]. Green Energy Environ., 2022, 7(6): 1340
33 Ren X, Yang Z, Pang X, et al. The preparation and characterization of WS2 nanomaterials with different morphologies and the mechanistic study of peroxymonosulfate activation for phenol degradation [J]. Journal of Environmental Chemical Engineering, 2024, 12(5): 114082
34 Yao Y, Dong W B, Zhao Z, et al. Vertically aligned 1T-WS2 nanosheets supported on carbon cloth as a high-performance flexible photocatalyst [J]. Colloids Surf., 2022, 649A: 129533
35 Piao M, Chu J, Wang X, et al. Hydrothermal synthesis of stable metallic 1T phase WS2 nanosheets for thermoelectric application [J]. Nanotechnology, 2018, 29(2): 025705
36 Woods J M, Jung Y, Xie Y J, et al. One-step synthesis of MoS2/WS2 layered heterostructures and catalytic activity of defective transition metal dichalcogenide films [J]. ACS Nano, 2016, 10(2): 2004
doi: 10.1021/acsnano.5b06126 pmid: 26836122
37 Tong X, Qi Y H, Chen J, et al. Supercritical CO2-assisted reverse-micelle-induced solution-phase fabrication of two-dimensional metallic 1T-MoS2 and 1T-WS2 [J]. ChemNanoMat, 2017, 3(7): 466
38 Bi F K, Zhang X D, Chen J F, et al. Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation [J]. Appl. Catal., 2020, 269B: 118767
39 Koçak Y, Akaltun Y, Gür E. Magnetron sputtered WS2; optical and structural analysis [J]. J. Phys.: Conf. Ser., 2016, 707: 012028
40 Ma C, Feng S, Zhou J M, et al. Enhancement of H2O2 decomposition efficiency by the co-catalytic effect of iron phosphide on the Fenton reaction for the degradation of methylene blue [J]. Appl. Catal., 2019, 259B: 118015
41 Zhu Q, Chen W Z, Cheng H, et al. WS2 nanosheets with highly-enhanced electrochemical activity by facile control of sulfur vacancies [J]. ChemCatChem, 2019, 11(11): 2667
[1] 岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
[2] 汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
[3] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[4] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[5] 尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
[6] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[7] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[8] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[9] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[11] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[12] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[13] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[14] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
[15] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.