材料研究学报, 2024, 38(10): 759-767 DOI: 10.11901/1005.3093.2023.561

研究论文

316L不锈钢表面Fe-Al渗层的制备及其机理

文锋1, 张东勋,1, 王韡1, 滕心跃2, 楚鑫新1

1.中国科学院上海应用物理研究所 上海 201800

2.上海应用技术大学化学与环境工程学院 上海 201400

Preparation and Formation Mechanism of Fe-Al Coating on 316L Stainless Steel by Pack Cementation Aluminizing

WEN Feng1, ZHANG Dongxun,1, WANG Wei1, TENG Xinyue2, CHU Xinxin1

1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

2.College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201400, China

通讯作者: 张东勋,研究员,zhangdongxun@sinap.ac.cn,研究方向为氢同位素在结构材料中的扩散渗透

责任编辑: 黄青

收稿日期: 2023-11-24   修回日期: 2024-04-20  

基金资助: 国家自然科学基金(11935011)

Corresponding authors: ZHANG Dongxun, Tel: 18616354512, E-mail:zhangdongxun@sinap.ac.cn

Received: 2023-11-24   Revised: 2024-04-20  

Fund supported: National Natural Science Foundation of China(11935011)

作者简介 About authors

文 锋,男,1996年生,助理工程师

摘要

使用低含量的NH4Cl活化剂,用粉末包埋法在不同温度对316L不锈钢渗铝不同时间在其表面制备了连续致密的Fe-Al渗层,使用金相显微镜(OM)、X射线衍射(XRD)、扫描电镜(SEM)和能谱分析(EDS)等手段表征了Fe-Al渗层的表面形貌、截面结构以及物相组成,研究了渗铝温度和渗铝时间的影响。结果表明,在不同温度渗铝,渗层主要由Fe2Al5相和FeAl3相组成且呈多层结构,渗层厚度随着渗铝温度的提高而增大;在650~750℃渗铝,渗层呈锯齿状结构嵌入基底,随着渗铝温度的提高齿状形貌特征逐渐消失且渗层表面质量变差。随着渗铝时间的增加,渗层的厚度随之增加但是物相组成不变。结合渗层成分的热力学稳定性,分析了渗层的形成过程。在反应初期已经在基体表面生成了FeAl3相,但是Fe2Al5相一旦开始生成其生长速率就远高于FeAl3相而使其生长受到抑制;而Fe3Al相,只有在温度低于422℃时才开始生成。在动力学基础上建立了渗铝的动力学模型并计算出其扩散激活能。

关键词: 金属材料; 阻氚涂层; 包埋渗铝法; Fe-Al渗层; 微观结构

Abstract

The pack cementation aluminizing method is a common process for preparing tritium barrier coatings. A dense and continuous Fe-Al coating can be prepared on the surface of stainless steels, while the microstructure of the aluminide layer has an important effect on the barrier properties of the top Al2O3 film formed on the coating. Herein, Fe-Al aluminide coating was prepared on 316L stainless steel via pack cementation method with NH4Cl as activator. The surface, cross-sectional morphology, phase composition of the Fe-Al coating was characterized by means of optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The results show that the aluminized coatings prepared at different temperatures are mainly composed of Fe2Al5 and FeAl3. The thickness of the aluminized coating increases with the increase of temperature, and shows a multi-layered structure. When the aluminizing temperature is between 650oC and 750oC, the aluminizing coating shows a serrated structure embedded in the substrate. As the temperature increases, the serrated morphology gradually disappears and the surface quality of the aluminizing coating deteriorates; With the increasing aluminizing time, the thickness of the aluminized coating gradually increases, but does not affect its phase structure. In addition, the formation process of the aluminizing coating was analyzed in terms of the thermodynamics stabilities of its structure and conponents. The FeAl3 phase was formed on the surface of the substrate at the initial stage of the reaction, however, the growth rate of the Fe2Al5 phase was much higher than that of the FeAl3 phase, thereby, the former will inhibit the growth of the later once the former emerges at the initial stage, which led to the growth of the FeAl3 phase was suppressed. The Fe3Al phase begins to form only when the temperature is lower than 422oC. On the basis of kinetics, a kinetic model of aluminizing process was established and the diffusion activation energy was calculated.

Keywords: metallic materials; tritium barrier coating; pack aluminizing; Fe-Al layer; microstructure

PDF (11484KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

文锋, 张东勋, 王韡, 滕心跃, 楚鑫新. 316L不锈钢表面Fe-Al渗层的制备及其机理[J]. 材料研究学报, 2024, 38(10): 759-767 DOI:10.11901/1005.3093.2023.561

WEN Feng, ZHANG Dongxun, WANG Wei, TENG Xinyue, CHU Xinxin. Preparation and Formation Mechanism of Fe-Al Coating on 316L Stainless Steel by Pack Cementation Aluminizing[J]. Chinese Journal of Materials Research, 2024, 38(10): 759-767 DOI:10.11901/1005.3093.2023.561

316L不锈钢具有优异的抗腐蚀性能和良好的机械性能,广泛应用于制造储氢装置和聚变反应堆[1]。在聚变堆中氢及其同位素是核聚变反应的主要燃料,其中氚的放射性和活性对结构材料的扩散较强,容易造成泄漏、燃料损失、材料脆化和放射性污染[2~4]。在钢结构材料表面制备阻氚涂层,可减少氢及其同位素的渗透[5,6]

阻氚涂层的性能主要取决于材料的选择和涂层的制备工艺。评价阻氚涂层的最重要指标,是氚渗透降低因子(Tritium Permeation Reduce Factor, TPRF)。铝化物复合结构涂层具有优异的性能,如低氚渗透性、高强度和耐高温性,是阻氚涂层的首选[7~11]。Al2O3/Fe-Al复合阻氚涂层是保护涂层的典型代表[12],其中Fe-Al渗层能缓解Al2O3涂层和基体间的热适配,降低Al2O3涂层在温度变化过程中开裂的风险,且Fe-Al合金层能提供氧化铝膜裂纹自修复所需的活性元素[13~15]

制备Al2O3/Fe-Al复合阻氚涂层的方法,主要有包埋渗铝+原位氧化、热浸铝+原位氧化、电镀沉积+原位氧化等[16~18]。包埋渗铝本质上是一种原位化学气相沉积(CVD),操作简单,可用于制备各种尺寸和复杂几何形状的涂层组件[19,20]。铝化物涂层的制备涉及复杂的化学反应,许多研究人员研究了不同制备过程中的热力学[21~24]。对于铝化物涂层的制备,目前尚存在一些争议。Majumdar等[24]使用NH4Cl作为催化剂在450℃~1050℃的宽温度范围内研究了SS316不锈钢在包埋渗铝过程中铝化物的生成。结果表明,在450℃~650℃的较低温度范围内Fe2Al5相的生长动力学比其他铁铝化物高得多,并且在渗铝试样中生成了由Fe2Al5相组成的单层。在高于700℃的温度,从外表面向基体生成了由Fe2Al5/FeAl/Fe(Al)组成的多个铁铝化物层。Dong等[25]使用AlCl3作为催化剂,在不同温度(600、650和680℃)和对316L不锈钢进行了不同时间(2、3和4 h)的低温渗铝。结果表明,先生成的是Fe2Al5相,其次是FeAl和FeAl3相,温度降至422℃以下Fe3Al相才开始生成。动力学研究结果表明,低温渗铝过程的活化能较低(164.78 kJ/mol)。Kobayashi等[26]研究了低碳钢经热浸法渗铝后在873~1323 K内表面Fe-Al金属间化合物层的生长机理。结果表明,在873~923 K扩散Fe2Al5主要在试样表面生成,高温度于1273 K时优先生成FeAl和Fe3Al相层。生长FeAl和Fe3Al层所需的活化能,分别为QFeAl = 180 kJ/mol和QFe3Al= 260 kJ/mol。而李宁宁等[27]使用AlCl3作为催化剂研究了Q235低碳钢的包埋渗铝过程。结果表明,在300~1500 K反应初期伴随Al和Fe的固态扩散在基体表面先生成FeAl3相,然后才生成Fe2Al5相。鉴于此,本文使用低含量(1%,质量分数)NH4Cl作为活化剂,采用粉末包埋渗铝法在不同温度对316L不锈钢进行不同时间的渗铝;在Fe-Al渗层的生成热力学和动力学基础上建立渗铝过程中多层相结构Fe-Al渗层的生成模型示意图以及动力学模型,并阐述渗铝过程中Fe-Al渗层的生成机理。

1 实验方法

1.1 实验用材料

实验用材料有316L不锈钢和渗剂。

316L不锈钢的化学成分,列于表1。用自动精密切割机(MECA TOME T210)将材料切割成尺寸为30 mm × 25 mm × 1 mm的矩形薄片,将其依次用120#、320#、600#碳化硅砂纸磨去表面氧化层,然后置于丙酮溶液中超声清洗10 min,吹干后备用。

表1   316L不锈钢合金的成分(质量分数,%)

Table 1  Alloy composition of 316L stainless steel (mass fraction, %)

ElementCrNiMoMnSiCFe
Content16.0~18.010.0~14.02.0~3.0≤2.0≤1.0≤0.03Bal.

新窗口打开| 下载CSV


渗剂的配比为8%Al + 1%NH4Cl + 91%Al2O3。将渗剂混合研磨均匀后装入刚玉坩埚(ϕ45 mm × 50 mm)中,将试样放置于坩埚中间位置后使用高温胶水(回天2767系列)密封,在常温固化24 h后放入马弗炉中依次在80℃保温2 h、在150℃保温2 h,以使高温胶水进一步固化。

1.2 渗铝

将固化后的坩埚置于真空管式炉内,以4℃/min速率升温至预定温度后保温预定时间,然后随炉冷却至室温,取出样品洗净烘干并称其质量。实验温度和保温时间列于表2

表2   包埋渗铝实验方案

Table 2  Experimental scheme of pack aluminizing

Sample1234567891011
Temperature / oC600650700750750750750750800850900
Time / h555135710555

新窗口打开| 下载CSV


1.3 微观结构的表征

用型号为DM6000的金相显微镜(OM)观察试样渗铝后的表面形貌;用型号为D8 Advance的X射线衍射仪(XRD)测定Fe-Al渗层的物相组成,2θ角的范围为10°~90°,扫描步长和滞留时间分别为0.02°和0.5 s;用附带能谱仪的LEO 1530VP型扫描电子显微镜(SEM)分析Fe-Al渗层截面的形貌和成分。

2 实验结果

2.1 渗铝温度对Fe-Al渗层的影响

图1为试样分别在600℃~900℃渗铝温度范围内渗铝5 h后在试样表面所测得的XRD图谱。可以看到在不同温度范围内,渗层的物相主要由FeAl3、Fe2Al5、FeAl、Fe3Al等物相组成。值得注意的是,在600℃时,可以观测到较强的316L基体的相峰和FeAl3相的相峰,当温度升高时,基体的相峰消失;这也侧面表明,600℃时试样表面所形成的渗层很薄,XRD射线穿透至基体;而随着温度升高,Al元素的进一步向基体内部扩散,渗层厚度增加,基体的衍射峰不再带出。

图1

图1   在不同渗铝温度制备的Fe-Al渗层的XRD谱

Fig.1   XRD patterns of Fe-Al aluminized layer prepared at different aluminizing temperatures


此外,根据衍射峰的相关高度,可以发现随着渗铝温度的升高Fe2Al5相的相峰呈现先增高后降低的趋势,在750℃时峰值达到最高;而FeAl和Fe3Al等相的相峰随温度升高而升高。初步判断在温度高于750℃时,Fe2Al5相会加快和Fe原子的反应速度形成FeAl相,从而导致Fe2Al5相的相峰高度下降。

图2为在600℃~850℃渗铝温度范围内分别渗铝5 h后试样表面的组织形貌的金相照片。可以看到,在该渗铝温度范围内渗铝5 h后,试样的表面均无明显裂纹存在;但观察发现在渗铝温度为600℃时,试样的基体表面颜色不均匀,未能形成平整且具有一定厚度的渗层,如图2a所示,这也与XRD测试结果相一致。随着渗铝温度升高,试样表面开始逐渐变的均匀,但在升至850℃及更高温度后,试样表面开始出现熔融的铝覆盖在渗层表面,如图2f所示。

图2

图2   在不同渗铝温度制备的试样的表面组织形貌金相照片

Fig.2   Metallographic photos of the surface morphology of the sample at different aluminizing temperatures


为了分析渗铝温度对渗层厚度的影响,对试样渗层的截面形貌进行了SEM观察,如图3所示。可以看到,随着渗铝温度的升高,渗层总厚度逐渐增加,从600℃时的5.3 μm增加至850℃时的64.0 μm;当渗铝温度大于等于650℃时渗层可以观察到明显的双层结构,且内渗层厚度随渗铝温度升高增加明显,外渗层厚度增加缓慢,如图3b~f所示。

图3

图3   在不同渗铝温度制备的渗层的截面形貌SEM照片

Fig.3   SEM photos of the cross-section morphology of the aluminized layer at different aluminizing temperatures


此外,在不同渗铝温度下,渗层和基体连接紧密,内部无明显空洞存在。值得注意的是,在650℃~750℃渗铝温度范围内,与基底相邻的渗层形成了明显的连续紧凑的锯齿状结构,如图3b~d所示;特别地,750℃时其形貌特征较之更为明显,在这种形貌特征下,渗层和基体形成冶金结合,界面之间的结合力得到加强,而这与渗层内部物相的晶体结构有关。通过XRD和EDS分析(图5)可知,渗层内部为具有斜方点阵结构的Fe2Al5相,Al原子占据在其C轴结点处,因该轴上空位较多,因从Al原子可以沿该轴向基体快速扩散,最终使渗层呈现出锯齿状形貌特征嵌入基体界面[27]。伴随温度升高,齿状特征逐渐变宽乃至消失,同时渗层的表面质量也逐渐变差,如图3e,f所示。

图4

图4   在900℃制备的渗层截面形貌的SEM照片

Fig.4   SEM photos of the cross-section morphology of the aluminized layer at 900oC


图5

图5   不同渗铝时间制备的Fe-Al渗层的XRD谱

Fig.5   XRD patterns of Fe-Al aluminized layer prepared at different aluminizing time


随着渗铝温度升至900℃渗层厚度很快增加到123.5 μm,如图4a所示。在900℃,渗层开始出现明显的内过渡层,且在Fe(Al)各相之间的界面处出现孔隙,如图4b所示。其原因是,在高温渗铝过程中在B2结构的Fe-Al合金中容易产生高浓度的Fe空位。这种空位在很大程度上保留在晶格中,导致这些孔隙的形成[24]。同时,在放大区域空间渗层的析出相颗粒随温度的升高越来越多,且聚集连成片。

为了进一步确认渗层的物相组成和形成规律,分别对在600℃和900℃渗铝5 h所得渗层的截面进行了EDS分析。在渗层的不同位置对其进行了点扫描,扫描位置如图3a图4a所示,所得元素的成分组成列于表3。根据各点对应的Al、Fe原子分数,在600℃渗层极薄,在点1处的点扫描得到Al和Fe的原子比近似等于3∶1。结合XRD结果可推断,其物相为FeAl3相;在900℃渗层较厚且呈多层结构,分别对3个位置进行了点扫描。从外向内Al含量逐渐降低而Fe含量逐渐提高,根据其原子之比推断出点1、2、3处的物相依次为FeAl3、Fe2Al5和FeAl相,点4处则为基体。这表明,不同的渗铝温度,Al、Fe原子的扩散的结果渗层最先形成的是最外层的FeAl3相,其次是中间层的Fe2Al5相和内层FeAl相。这个结论,与现有文献的结果一致[25,27,28]

表3   对图3a和图4a中各点元素成分的扫描

Table 3  Corresponding to the elemental composition scanned at each point in Fig.3a and Fig.4a

Temperature / oCSpotElements / %, atom fraction
AlFeCrNi
600156.1219.8019.464.62
2059.0618.9210.76
900160.0420.625.292.50
253.0123.625.636.63
340.9431.278.579.17
4056.1214.5710.56

新窗口打开| 下载CSV


2.2 渗铝时间对Fe-Al渗层的影响

在750℃渗铝不影响基材性能,得到的渗层厚度适中,渗层与基体呈冶金结合,因此在750℃渗铝研究渗铝时间对Fe-Al渗层的影响。

图5给出了在750℃渗铝1 h、3 h、5 h、7 h、10 h试样表面的XRD谱。可以看到,渗铝不同时间得到的Fe-Al渗层,其物相组成没有明显的变化,都是由Fe2Al5、FeAl3等相组成。这表明,渗铝时间对Fe-Al渗层的物相组成的影响较小。

图6给出了在750℃渗铝1 h、3 h、7 h、10 h渗层截面组织形貌的SEM照片。可以看到,渗铝不同时间的渗层内部致密无裂纹。在750℃渗铝5 h的渗层,其厚度为41.9 μm (图3d)。观察发现,渗铝时间为1~5 h的渗层其厚度随着渗铝时间的延长很快增加,渗铝5 h后渗层厚度的增加减缓,呈抛物线趋势。其原因是,渗铝时间的延长使Fe2Al5相向FeAl相转变,渗铝时间超过10 h后渗层内出现过渡层。在与基体的界面渗层呈齿状嵌入,随着渗铝时间的延长齿状变宽且渗层表面质量变差。渗铝10 h的渗层其表层甚至出现孔洞,如图6d所示。

图6

图6   不同渗铝时间制备的渗层截面形貌的SEM照片和EDS点扫描位置

Fig.6   SEM photos of the cross-section morphology of the aluminized layer under different aluminizing time and the point scanning position of the aluminized layer


为了研究渗铝时间对渗层物相转变的影响,在750℃分别对渗铝1 h、10 h后的渗层进行EDS点扫描。扫描位置如图6a,d所示,对应各点的元素成分列于表4。结合XRD谱和各点处的Al、Fe原子比可见,不同渗铝时间的渗层其最外层位FeAl3相,然后是由Fe2Al5相组成的最厚的中间层。随着渗铝时间的延长,渗层与基体连接处出现由FeAl相和Fe3Al组成的过渡层。

表4   对应图6a,d中各点扫描的元素成分组成

Table 4  Corresponding to the elemental composition scan-ned at each point in Fig.6a, d

Time / hSpotElements / %, atom fraction
AlFeCrNi
1164.7720.727.626.90
260.9126.357.904.84
357.0025.6811.435.89
40.6466.2121.0012.14
10163.9622.046.917.08
259.7731.788.390.06
355.1620.3824.170.29
413.2256.3621.459.03

新窗口打开| 下载CSV


3 讨论

3.1 渗层的热力学分析

渗铝涂层的制备涉及的反应,主要包括活性铝原子[Al]的产生和铁铝合金相的生成[29,30]。活性铝原子[Al]在气相反应中生成,在渗铝过程中NH4Cl达到气化温度(340℃)分解出的HCl与Al反应生成AlCl3,AlCl3与Al反应生成氯化铝气体前体AlCl和AlCl2。二者分解产生活性铝原子[Al]和AlCl3,AlCl3作为媒介把[Al]输运到基体表面与基体表面的Fe反应,这使表面的铝减少进而把粉末中铝输送刀基体表面,如此循环往复。涉及的主要反应有

NH4ClHCl+NH3
6HCl+2Al2AlCl3+3H2
AlCl3+AlAlCl+AlCl2
3AlCl2[Al]+AlCl3
3AlCl2[Al]+2AlCl3

铁铝合金相的生成分为两种形式:一种是在包埋过程中在基体表面或扩散到涂层内部与铁原子反应生成铁铝相;另一种是生成的合金相与活性铝或铁原子反应生成其他类型的合金相[25]。根据铁铝金属间化合物的二元相图[24,26],在渗铝过程中可能发生如下反应:

3[Al]+FeFeAl3
2Fe+5[Al]Fe2Al5
Fe2Al5+3Fe5FeAl
3Fe+[Al]Fe3Al

参考文献中铁铝金属间化合物的吉布斯自由能(ΔG,J/mol)与温度(T,K)的关系,得到如下计算公式[25,31]

FeAl3: ΔG=-111368+16.95T
Fe2Al5:ΔG=-201636+42.56T
FeAl:ΔG=-48483+4.88T
Fe3Al:ΔG=-57192+82.28T

所得Fe(Al)各相的吉布斯自由能ΔG与温度的关系,如图7所示。

图7

图7   Fe-Al化合物的吉布斯能ΔG随温度T的变化

Fig.7   Variations of Gibbs energy ΔG with the temperature T for Fe-Al compounds


在600℃~900℃反应式(10~12)的吉布斯自由能ΔG随着温度的升高而增大,但是Fe2Al5、FeAl和FeAl3相的吉布斯自由能仍小于0,且Fe2Al5相的自由能最低。这表明,随着Al和Fe元素的固态扩散Fe2Al5相最容易生成。尽管XRD测试分析结果表明在反应初期FeAl3相已经在基体表面生成,但是Fe2Al5相生成后其生长速率远高于FeAl3相。随着Fe2Al5相的生长FeAl3相成为Fe2Al5相生长所需的铝源。这表明,FeAl3相的生长受到了抑制并被消耗,使其逐渐分散在表层。最后,渗层以Fe2Al5相为主,而FeAl3相只在其表面。同时,在温度高于695 K (422℃)反应(13)的吉布斯能ΔG变为正值,表明只有温度降低到422℃以下ΔG < 0时Fe3Al相才能生成。

在渗铝温度范围内多层相结构的铁铝合金渗层的生成模型,如图8所示。即当温度高于340℃时NH4Cl气化分解并与粉末中的铝粉反应生成AlCl3,将铝原子输送聚集到基体表面,如图8a,b所示;随着铝原子和铁原子的扩散,当温度升至650℃~750℃时渗层由FeAl3和Fe2Al5相组成,且呈锯齿状结构嵌入基底,如图8c所示;当温度升至800℃~900℃时渗层逐渐变厚并生成FeAl相且锯齿状结构消失,如图8d,e所示;最后,当温度冷却到低于422℃时Fe3Al相开始生成,如图8f所示。

图8

图8   多层相结构的铁铝合金渗层的形成过程模型

Fig.8   Schematic diagram of the formation process model of Fe-Al alloy aluminized layer with multilayer phase structure


3.2 渗层动力学

如上所述,渗层内以Fe2Al5相为主,因此根据渗层厚度可大致计算出Al原子在该体系中的扩散激活能和生长动力学方程。

图9给出了渗层厚度h的对数ln(h)与温度T的倒数1000/T值之间的关系,二者之间较强的线性关系表明,温度对渗层生长速率(kp)的影响符合Arrhenius规律,即

lnkp=-QRT+A1

式中Q为扩散激活能,kJ/mol;R为气体常数,取8.314;T为绝对温度,K;A1 为常数[27]

图9

图9   渗层厚度与渗铝温度的关系

Fig.9   Relation curve between aluminizing temperature and aluminizing layer thickness


渗层的生长速率kp近似为渗层厚度h。根据图9给出的拟合结果,其直线斜率值为-5.25,即-Q/R值,可计算出在600℃~900℃渗铝温度范围内Al原子的扩散激活能(Q值)约为43.63 kJ/ mol。与王军等[32]使用AlCl3作为活化剂计算出的79.23 kJ/ mol相比,在渗剂组分比例相同条件下使用NH4Cl作为活化剂Al原子的扩散激活能约小一半,即在相同条件下NH4Cl更有利于Al原子的扩散。根据拟合结果,在不同渗铝温度下Fe-Al渗层的生长动力学方程为

ln(h)=-5247.2/T+10.6

同时,在750℃进行不同时间的渗铝,得到了不同厚度的渗层。根据以上结果并结合现有文献,可构建渗层厚度h与渗铝时间t1/2的关系,如图10所示。结果表明,随着渗铝时间的增加渗层的厚度呈现抛物线规律。根据拟合结果,渗铝不同时间得到的Fe-Al渗层的生长动力学方程为

图10

图10   渗层厚度与渗铝时间之间的关系

Fig.10   Relation curve between aluminizing time and thickness of aluminized layer


h=14.6 t1/2+3.0

式(16)表明,当t为0 h时渗层已有一定的厚度,因为在炉内升温至设定温度(750℃)时坩埚内渗铝剂的温度已经到达铝的熔点(660℃)和活化剂NH4Cl的气化温度(340℃),以致温度到达750℃前试样表面已经发生渗铝反应并生成了一定厚度的渗层。

综上所述,渗铝温度和时间对渗层物相受的影响较小,对相的含量和渗层厚度的影响较大。提高渗铝温度和延长渗铝时间均能提高Fe2Al5相的含量和增加渗层厚度,且渗铝温度对渗层的影响大于渗铝时间对渗层的影响。

4 结论

(1) 随着渗铝温度的提高和渗铝时间的延长,渗层的厚度随之增加且呈多层结构。渗铝温度和时间对渗层的物相组成影响不大,渗层都主要由FeAl3相和Fe2Al5相组成;FeAl3相最先在基体表面生成,Fe2Al5相的极快生长抑制了FeAl3相的生长;只有当渗铝温度低于422℃而Fe3Al相的吉布斯自由能小于0时,FeAl3相才开始生成。

(2) 渗铝温度为650℃~750℃时渗层呈锯齿状结构嵌入基底,与具有斜方点阵晶体结构的Fe2Al5相相关;温度升至800℃~900℃渗层的齿状形貌特征逐渐消失且渗层的表面质量降低,在Fe(Al)各相之间的界面处出现孔隙。

(3) 渗铝温度对渗层生长速率(kp)的影响符合Arrhenius公式规律,渗铝温度范围为600℃~900℃时Al原子的扩散激活能约为43.63 kJ/mol;单据Arrhenius公式拟合出不同渗铝时间Fe-Al渗层的生长动力学方程式h = 14.6 t1/2 + 3.0。

参考文献

He D, Li S, Liu X, et al.

Preparation of Cr2O3 film by MOCVD as hydrogen permeation barrier

[J]. Fusion Eng. Des., 2014, 89(1): 35

[本文引用: 1]

Wang X, Ran G, Wang H, et al.

Current progress of tritium fuel cycle technology for CFETR

[J]. J. Fusion Energy, 2018, 38(1): 125

[本文引用: 1]

Ushida H, Katayama K, Matsuura H, et al.

Tritium permeation behavior through pyrolytic carbon in tritium production using high-temperature gas-cooled reactor for fusion reactors

[J]. Nucl. Mater. Energy, 2016, 9(C): 524

Tamura M, Eguchi T.

Nanostructured thin films for hydrogen-permeation barrier

[J]. J. Vac. Sci. Technol., A, 2015, 33(4): 041503

[本文引用: 1]

Chikada T, Shimada M, Pawelko R J, et al.

Tritium permeation experiments using reduced activation ferritic/martensitic steel tube and erbium oxide coating

[J]. Fusion Eng. Des., 2014, 89(7-8): 1402

[本文引用: 1]

Zhang G, Lu Y, Wang X.

Hydrogen interactions with intrinsic point defects in hydrogen permeation barrier of α-Al2O3: a first-principles study

[J]. Phys. Chem. Chem. Phys., 2014, 16(33): 17523

[本文引用: 1]

Zhang G K, Yang F L, Lu G D, et al.

Fabrication of Al2O3/FeAl coating as tritium permeation barrier on tritium operating component on quasi-CFETR scale

[J]. J. Fusion Energy, 2018, 37(6): 317

[本文引用: 1]

Majumdar S, Paul B, Chakraborty P, et al.

Formation of Al2O3/FeAl coatings on a 9Cr-1Mo steel, and corrosion evaluation in flowing Pb-17Li loop

[J]. J. Nucl. Mater., 2017, 486(4): 60

Chen J, Li X, Hua P, et al.

Growth of inter-metallic compound layers on CLAM steel by HDA and preparation of permeation barrier by oxidation

[J]. Fusion Eng. Des., 2017, 125(12): 57

Choudhary R K, Mishra S C, Mishra P, et al.

Mechanical and tribological properties of crystalline aluminum nitride coatings deposited on stainless steel by magnetron sputtering

[J]. J. Nucl. Mater., 2015, 466(11): 69

Wang J, Li Q, Xiang Q Y, et al.

Performances of AlN coatings as hydrogen isotopes permeation barriers

[J]. Fusion Eng. Des., 2016, 102(1): 94

[本文引用: 1]

Li H, Ke Z, Li J, et al.

An effective low-temperature strategy for sealing plasma sprayed Al2O3-based coatings

[J]. J. Eur. Ceram. Soc., 2018, 38(4): 1871

[本文引用: 1]

Xiang X, Wang X, Zhang G, et al.

Preparation technique and alloying effect of aluminide coatings as tritium permeation barriers: A review

[J]. Int. J. Hydrogen Energy, 2015, 40(9): 3697

[本文引用: 1]

Cao W, Ge S, Song J, et al.

A deuterium permeation barrier by hot-dipping aluminizing on AISI 321 steel

[J]. Int. J. Hydrogen Energy, 2016, 41(12): 23125

Zhan Q, Yang H G, Zhao W W, et al.

Characterization of the alumina film with cerium doped on the iron-aluminide diffusion coating

[J]. J. Nucl. Mater., 2013, 442(1-3): S603

[本文引用: 1]

Liang C F, Liu W, Xia X B, et al.

An Al2O3/Ni-Al tritium permeation barrier coating for the potential application in thorium-based molten salt reactor

[J]. Vacuum, 2023, 213: 112110

[本文引用: 1]

Hu L, Zhang G K, Tang T.

Research progress on formation mechanism and low temperature preparation technology of Al2O3 film on surface of Fe-Al/Al2O3 tritium permeation barrier

[J]. Mater. Mech. Eng., 2019, 43(6): 1

胡 立, 张桂凯, 唐 涛.

Fe-Al/Al2O3阻氚涂层表面Al2O3薄膜形成机制与低温制备技术的研究进展

[J]. 机械工程材料, 2019, 43(6): 1

Liu J F, Wang Z, Ding Y S, et al.

Bonding properties of Fe/Al2O3 ceramic gradient coating

[J]. Chin. J. Mater. Res., 2010, 24(4): 5

[本文引用: 1]

刘健飞, 王 志, 丁寅森 .

Fe/Al2O3陶瓷梯度涂层的结合性能

[J]. 材料研究学报, 2010, 24(4): 5

[本文引用: 1]

Liang C F, Liu W, Xia X B, et al.

Preparation of α-Al2O3/NiAl multilayer coatings on GH3535 superalloy surface by pack cementation and subsequent in situ oxidation

[J]. Vacuum, 2022, 203: 111288

[本文引用: 1]

Zhu L, Zheng L, Xie H, et al.

Design and properties of Fe-Al/Al2O3/TiO2 composite tritium-resistant coating prepared through pack cementation and sol-gel method

[J]. Mater. Today Commun., 2021, 26(3): 101848

[本文引用: 1]

Pérez F J, Hierro M P, Trilleros J A, et al.

Iron aluminide coatings on ferritic steels by CVD-FBR technology

[J]. Intermetallics, 2006, 14(7): 811

[本文引用: 1]

Sánchez L, Bolívar F J, Hierro M P, et al.

Effects of reactive gaseous mixture and time on the growth rate and composition of aluminium diffusion coatings by CVD-FBR on 12Cr-ferritic steel

[J]. Surf. Coat. Technol., 2007, 201(18): 7626

Wang Y Q, Zhang Y, Wilson D A.

Formation of aluminide coatings on ferritic-martensitic steels by a low-temperature pack cementation process

[J]. Surf. Coat. Technol., 2010, 204(16-17): 2737

Majumdar S, Bhaskar P, Kain V, et al.

Formation of Al2O3/Fe-Al layers on SS316 surface by pack aluminizing and heat treatment

[J]. Mater. Chem. Phys., 2017, 190(4): 31

[本文引用: 4]

Dong Y, Sun Y H, He F Y.

Formation mechanism of multilayer aluminide coating on 316L stainless steel by low-temperature pack cementation

[J]. Surf. Coat. Technol., 2019, 375: 833

[本文引用: 4]

Kobayashi S, Yakou T.

Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment

[J]. Mater. Sci. Eng. A, 2002, 338(1-2): 44

[本文引用: 2]

Li N N, Chen Y, Chen X, et al.

Preparation method and diffusion mechanism of Fe-Al coating on Q235 low carbon steel by pack aluminizing

[J]. Chin. J. Mater. Res., 2021, 35(8): 572

DOI      [本文引用: 4]

The Fe-Al coating, with compactness, stiffness, and continuity, could be prepared on Q235 low carbon steel by pack aluminizing. The phase structure, morphology, composition, and hardness of the prepared coating were characterized by XRD, SEM, EDS, and micro-hardness tester respectively. Results indicate that the Fe-Al coating is composed of Fe2Al5 and FeAl3 phases, whilst, the coating fabricated at 750℃ is particularly rich in Fe2Al5 phase. With the rising temperature, the thickness of Fe-Al coating increases, whereas the micro-hardness decreases. As a result of aluminizing for different time, the formed coatings are composed of the two phases Fe2Al5 and FeAl3 as well. However, with the increasing aluminizing time, the content of FeAl3 phase decreases, while the micro-hardness of the coating decreases slightly. Finally, a diffusion mechanism related with the formation of Fe-Al coating is proposed based on the comprehensive analysis on the thermodynamics and kinetics of pack aluminizing process.

李宁宁, 陈 旸, 陈 希 .

包埋渗铝法制备 Fe-Al渗层及其扩散机制

[J]. 材料研究学报, 2021, 35(8): 572

DOI      [本文引用: 4]

包埋渗铝法可在钢基体表面制备出一层致密、坚固、连续的Fe-Al渗层,以改善基体性能。本文在不同温度和不同时间下对Q235低碳钢进行包埋渗铝,形成Fe-Al渗层,采用X射线衍射、扫描电镜及能谱分析等方法研究了渗铝层的物相结构、表面及截面形貌和成分,采用显微硬度仪测量了截面硬度。结果表明,不同渗铝温度下获得的渗铝层,主要含有Fe<sub>2</sub>Al<sub>5</sub>和FeAl<sub>3</sub>两相,且750℃得到的渗层存在较多Fe<sub>2</sub>Al<sub>5</sub>相;随着渗铝温度升高,Fe-Al渗层厚度增加,Al原子扩散系数增大,但显微硬度降低;不同渗铝时间下制备的渗铝层,物相仍以Fe<sub>2</sub>Al<sub>5</sub>和FeAl<sub>3</sub>为主,但随着渗铝时间延长,FeAl<sub>3</sub>含量减少,且Al原子扩散系数变大,渗层显微硬度略有降低。在进一步分析Fe-Al渗层形成的热力学与动力学基础上,总结了渗铝层形成的扩散机制。

Sun Y, Dong J, Zhao P, et al.

Formation and phase transformation of aluminide coating prepared by low-temperature aluminizing process

[J]. Surf. Coat. Technol., 2017, 330: 234

[本文引用: 1]

Xiang Z D, Datta P K.

Pack aluminisation of low alloy steels at te-mperatures below 700oC

[J]. Surf. Coat. Technol., 2004, 184(1): 108

[本文引用: 1]

Wang J, Wu D J, Zhu C Y, et al.

Low temperature pack aluminising kinetics of nickel electroplated on creep resistant ferritic steel

[J]. Surf. Coat. Technol., 2013, 236: 135

[本文引用: 1]

Yang Y, Zhang F, He J, et al.

Microstructure, growth kinetics and mechanical properties of interface layer for roll bonded aluminum-steel clad sheet annealed under argon gas protection

[J]. Vaccum, 2018, 151: 189

[本文引用: 1]

Wang J, Liu C N, Liang C F, et al.

Formation and kinetics of aluminide coating on 316L stainless steel by pack cementation process

[J]. Nucl. Tech., 2023, 46(3): 8

[本文引用: 1]

王 军, 刘超男, 梁超飞 .

316L不锈钢包埋渗铝涂层制备及动力学研究

[J]. 核技术, 2023, 46(3): 8

[本文引用: 1]

/