长时热暴露对一种热障涂层/DZ411镍基高温合金体系界面组织演变的影响
Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy
通讯作者: 张思倩,教授,sqzhang@alum.imr.ac.cn,研究方向为单晶高温合金变形损伤机制
责任编辑: 吴岩
收稿日期: 2024-01-01 修回日期: 2024-03-07
基金资助: |
|
Corresponding authors: ZHANG Siqian, Tel:
Received: 2024-01-01 Revised: 2024-03-07
Fund supported: |
|
作者简介 About authors
袁鸿渊,男,1998年生,硕士生
将一种热障涂层/DZ411镍基高温合金体系分别在900和1000 ℃进行长时热暴露,使用扫描电子显微镜(SEM)、能谱分析仪(EDS)、透射电子显微镜(TEM)等手段表征涂层/基体界面以研究其微观组织的演变行为。结果表明:随着热暴露时间的延长基体/涂层界面(CSI)下方的基体发生再结晶,σ相的析出方向与CSI呈45°角。在900和1000 ℃热暴露的二次反应区(SRZ)与拓扑密堆相(TCP)的演变显著不同。在900 ℃热暴露100 h后富Cr相弥散分布在混乱的γ'相组成的互扩散区(IDZ),而在1000 ℃热暴露100 h后IDZ、SRZ由胞状再结晶组成,富Cr相的析出不明显。在900 ℃热暴露500~2000 h后IDZ、SRZ逐渐长大,富Cr相在再结晶晶界附近沿着与CSI呈45°角的方向析出;在1000 ℃热暴露后富Cr相在再结晶晶界下方聚集析出,SRZ逐渐退化为IDZ。长时热暴露后,界面组织的演变与元素的扩散密切相关。
关键词:
Herein, the effect of long term thermal exposure at 900 and 1000 oC on the microstructure variation of the interface MCrAlY thermal barrier coating/DZ411 Ni-based directionally solidified superalloy (IC/S)was studied by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The results indicate that with the extension of thermal exposure time, the substrate beneath the IC/S undergoes recrystallization, the orientation of σ-phase precipitates is 45° respect to the IC/S. Significant differences were observed in the evolution of secondary reaction zone (SRZ) and topologically close-packed (TCP) phases during heating process at 900 oC and 1000 oC. After being exposed at 900 oC for 100 h the granular Cr-rich phase precipitated in the interdiffusion zone (IDZ) composed of chaotically distributed γ'-phase; In contrast, IDZ and SRZ were formed after being exposed at 1000 oC for 100 h, and the precipitates of Cr-rich phase were not significant. After being exposed at 900 oC for 500 h to 2000 h, IDZ and SRZ gradually grow, and the orientation of Cr-rich phase precipitates nearby the recrystallized grain boundary with an angle 45°; However, at 1000 oC the Cr-rich phase precipitates and aggregates below the recrystallized grain boundary, and SRZ gradually degenerates into IDZ. The evolution of interface structure is closely related to the diffusion of elements after long-term heat exposure.
Keywords:
本文引用格式
袁鸿渊, 张思倩, 王栋, 张英建, 马力, 于明涵, 张浩宇, 周舸, 陈立佳.
YUAN Hongyuan, ZHANG Siqian, WANG Dong, ZHANG Yingjian, MA Li, YU Minghan, ZHANG Haoyu, ZHOU Ge, CHEN Lijia.
长期以来,界面处的Kirkendall孔洞、互扩散区(Inter diffusion zone;IDZ)、二次反应区(Secondary reaction zone;SRZ)、基体扩散区(Substrate diffusion zone;SDZ)以及TCP相的形核长大一直是研究的重点[19~22]。研究者认为,元素扩散和涂层的制备工艺对界面组织的演变有较大的影响。Liang等[20]研究了TBC/DZ 125镍基高温合金体系的扩散行为,结果表明:涂层中的Al、Cr、Co向CSI下方扩散,使共格排列的γ/γ′相结构受到破坏而促进了SRZ和TCP相的生成。Yang等[22]研究了涂层元素扩散引起的界面微观结构演变,结果表明:在高温下涂层中的Cr扩散到CSI下方促进了IDZ的生成,Al含量的提高使Ni的活性降低,Cr含量的提高使Co和Ni的活性降低,导致IDZ中Co的积累、Ni的流失和基体中Ni的流失,从而促进了SRZ的形核和IDZ的长大。SRZ中Al的富集和SDZ中Ni的消耗也能促进富Cr的M23C6形核,而Al在富Cr的IDZ和M23C6中极低的溶解度抑制了Al向基底扩散[23,24]。Yuan等[25,26]认为,涂层中的Co和Cr向基体扩散使基体中的γ′相不稳定和Al元素过饱和析出,从而减缓了β相的消耗;同时,基体中的Ti向涂层扩散使涂层退化而生成较多的γ′相,使涂层中Al元素的浓度差降低而提高了β相的稳定性[27,28]。另一方面,样品的制备工艺对组织演变也有重要的影响。Liu等[29]认为,基体的曲率影响TBC微观结构的演变。制备态涂层内存在压缩应变/应力,但是随着热暴露时间的延长逐渐减小。在900和950 ℃热暴露涂层的应变/应力变化率较低,组织的演变较慢;在1000和1050 ℃热暴露涂层的应变/应力变化率较高,组织的演变较快。Moritz等[18]研究了用不同工艺制备的涂层在1050 ℃热暴露后Kirkendall孔隙的演变,发现界面处Cr的积累是Kirkendall孔隙较少的原因;用超音速火焰喷涂(High velocity oxygen fuel spraying;HVOF)制备的涂层中产生Kirkendall孔隙率的比例较大。但是,目前关于服役温度对热障涂层/镍基高温合金体系界面组织退化的研究较少。鉴于此,本文将涂敷TBC体系的DZ411镍基高温合金在不同温度热暴露,研究长时热暴露对其界面组织演变的影响。
1 实验方法
用液态金属冷却法(Liquid-metal cooling;LMC)制备定向凝固高温合金DZ411试棒,其名义成分列于表1。对DZ411试棒进行固溶+二次时效处理,其制度为:1220 ℃/2 h (Air cooling;AC) + 1120 ℃/2 h (AC) + 850 ℃/24 h (AC)。用电火花线切割机将热处理后的试棒沿<001>方向加工成直径为16 mm厚度为4 mm的试片并对其进行倒角(R = 1)处理,然后用800#的SiC砂纸研磨。
表1 实验合金和涂层的名义成分
Table 1
Co | Cr | Al | Ti | Ta | W | Mo | C | Y | Ni | |
---|---|---|---|---|---|---|---|---|---|---|
DZ411 | 9.0 | 13.5 | 3.0 | 4.6 | 2.5 | 3.5 | 1.3 | 0.1 | - | Bal. |
NiCoCrAlY | 33 | 22 | 10 | - | - | - | - | - | 0.4 | Bal. |
将试片分别置于酒精和丙酮中进行超声波清洗。为了提高涂层在试片上的附着力,制备涂层前对所有的试片在潮湿气氛下进行喷砂(玻璃球,200目)处理,喷砂压力为0.3 MPa。用超音速火焰喷涂(High-Velocity oxygen-fuel;HVOF)和大气等离子喷涂(Air plasma spray;APS)分别在试片的两个表面沉积BC和TC,厚度分别为250和350 μm。BC为NiCoCrAlY涂层,成分列于表1,TC由8%氧化钇稳定氧化锆组成。
将沉积了涂层的试片放入坩埚并置于马弗炉(900和1000 ℃)中进行长期热暴露实验,分别在100、200、500、1000、2000、4500 h时间段取样以观察其显微组织。
热暴露实验结束后,用配有能谱仪(EDS)和电子背散射衍射分析仪(EBSD)的场发射扫描电子显微镜(SEM,Tescan MIRA 4)观察样品的显微组织、元素和相的分布。用SEM表征微观结构前用4 g CuSO4 + 12 mL HCl + 20 mL H2O的混合溶液将试样腐蚀;进行EBSD表征前,将磨抛后的金相试样进行振动抛光。用FEI T20型透射电镜并使用选区衍射技术(SAD)鉴定IDZ、SRZ及SDZ中的析出相。进行TEM表征前,将制备好的试样在-25 ℃和20 V条件下用Tenupol-5电解双喷减薄仪将其减薄,双喷液为乙醇和高氯酸混合溶液(体积分数为9∶1),冷却介质为液氮。使用Image J软件测量IDZ、SRZ、SDZ厚度和计算β-NiAl相体积分数,选取5张视场相同的SEM图像测量厚度,测量点不少于50个。
2 实验结果
2.1 涂层原始形貌
图1
图1
喷涂后热障涂层/合金截面形貌、CSI截面形貌及元素分布
Fig.1
(a) cross section morphology of thermal barrier coating/alloy after spraying; (b) CSI cross-sectional morphology and elemental deposition
表2 涂层中各相的成分
Table 2
Al | Cr | Co | Y | O | Ni | |
---|---|---|---|---|---|---|
β phase | 14.1 | 15.5 | 28.8 | 0.8 | - | Bal. |
γ phase | 4.1 | 27.0 | 42.1 | 0.3 | - | Bal. |
Al2O3 | 53.0 | 2.2 | 2.1 | - | 40.8 | Bal. |
2.2 涂层退化
图2给出了试样在900和1000 ℃热暴露500、4500 h后涂层/基体截面的形貌。可以看出,在900 ℃热暴露500 h后在BC外层形成了厚度约为12 µm的上β贫化区(记为A区,下同)(图2a),BC涂层的中间区域仍由β相、γ基体及少量的内氧化物组成(记为B区,下同),但是β相的含量已经降低到37%。此时,在CSI下方的基体中可见厚度约为16 µm的互扩散区(记为D区,下同)。与900 ℃热暴露500 h相比,1000 ℃时,A区、D区厚度为30、36 µm,B区中β相含量降至30%,此时在BC内层观察到约20 µm的下β贫化区(记为C区,下同),且CSI处扩散诱导的Kirkendall孔洞数量增加(图2b)。
图2
图2
长时热暴露后TBC涂层/合金截面BSE图像
Fig. 2
BSE image of NiCoCrAlY coating/alloy cross-section after long-term thermal exposure (a) 900 oC-500 h; (b) 1000 oC-500 h; (c) 900 oC-4500 h; (d) 1000 oC-4500 h
表3 图2中各区元素分布
Table 3
Thermal exposure condition | A(Al-Cr-Co-Ni) | B(Al-Cr-Co-Ni) | C(Al-Cr-Co-Ni) | D(Al-Cr-Co-Ni) |
---|---|---|---|---|
900 ℃-500 h | 6-24-35-33 | 9-21-31-39 | - | 5-17-19-42 |
900 ℃-4500 h | 3-27-38-30 | 9-21-32-38 | 6-21-33-35 | 5-11-18-53 |
1000 ℃-500 h | 3-27-38-30 | 9-21-32-38 | 7-21-33-35 | 5-11-18-53 |
1000 ℃-500 h | 5-25-33-36 | 7-21-31-41 | 4-23-33-38 | 4-22-30-40 |
以上结果表明,在相同的温度热暴露,随着暴露时间的延长上β贫化区、互扩散区的厚度逐渐增大,CSI处孔洞的数量增多,β相的含量降低。在热暴露时间相同的情况下,热暴露温度为1000 ℃时上β贫化区和互扩散区的厚度更大,CSI处孔洞的数量更多,β相的含量下降得更多且下β贫化区更为明显。
2.3 界面微观组织演变
2.3.1 在900 ℃热暴露时界面微观结构的演变
为了揭示热障涂层/合金长时热暴露界面组织退化的规律,对涂层/基体横截面进行腐蚀。腐蚀后CSI的组织形貌在图3中给出,深基体处γ/γ'形貌见插图。在900 ℃热暴露100 h,在CSI下方形成了厚度分别约为9和10 µm的IDZ层和SDZ。与基体相比,IDZ区的γ/γ'结构较为混乱,SDZ区中的γ/γ'相发生球化(图3a)。IDZ、SDZ内部还有少量的颗粒状析出相,EDS鉴定为富Cr化合物。热暴露200 h后,CSI附近的基体组织主要由IDZ、SRZ、SDZ组成(图3b)。此时,IDZ主要由连续的γ层组成;SRZ是位于IDZ下方平均厚度为10 µm以γ'为基体的胞状结构组织,还有条状γ相和许多颗粒状富Cr析出相;SDZ由合并长大的γ/γ'相和沿一定方向析出的富Cr相组成。
图3
图3
在900 ℃热暴露不同时间后CSI横截面的BSE图像
Fig. 3
CSI cross-sectional BSE images after exposure for different time at 900 oC 100 h, (b) 200 h, (c) 500 h, (d) 1000 h, (e) 2000 h and (f) 4500 h
热暴露500 h后,IDZ、SRZ区的厚度分别为4、12 µm。受温度、互扩散等因素的影响富Cr相不同程度地长大,SDZ中的富Cr相倾向于沿一定方向析出并长大(图3c)。热暴露1000 h后,SRZ的不均匀退化、长大以及IDZ的长大使IDZ和SRZ的厚度分布不均匀。为了减小测量误差,同时测量了IDZ和SRZ的厚度。结果表明,IDZ+SRZ的厚度增大到23 µm。分布在SRZ/SDZ界面附近的析出相增多,SRZ中的富Cr相分布较为混乱,SDZ中的富Cr相沿45°和135°方向析出(图3d)。热暴露2000 h后,受涂层/基体间的化学梯度[30]和析出相曲率的影响[31],胞状组织中大量的富Cr相溶解,SDZ中的富Cr相也略有减少(图3e)。热暴露4500h后IDZ+SRZ厚度达到34 µm,SRZ中仍有较多的析出相,SDZ中的富Cr颗粒相聚集(图3f),此时SDZ区的厚度达到63 µm。
以上结果表明,热障涂层/DZ411合金试样在900 ℃热暴露200 h后形成了明显的IDZ、SRZ、SDZ,随着热暴露时间的延长IDZ、SRZ、SDZ的厚度逐渐增大;富Cr析出相优先在SRZ/SDZ界面附近析出并溶解或长大,析出点逐渐向基体深处扩展;SDZ区中颗粒状的富Cr相显著择优生长,生长方向与涂层/基体界面呈45°或135°角。
为了进一步分析CSI下方的组织,对在900 ℃热暴露100和4500 h的互扩散区组织进行了EBSD表征,结果在图4和图5中给出。热暴露100 h后观察到CSI下方由胞状再结晶(图4c)组成的IDZ,胞状再结晶/基体界面有少量的σ相(图4b),结合取向(IPF)图和晶体材料局部应变分布(KAM)图,可见基体内出现了应力集中(图4d)。结合相分布和元素分布图可见,σ相成分主要有Cr、Mo、W。热暴露4500 h后IDZ主要由连续的γ层再结晶组成,SRZ为胞状组织的再结晶。与热暴露100 h相比,热暴露4500 h后CSI下方的胞状再结晶组织长大(图5c),SDZ中的σ相增多(图5b),SDZ中出现少量应力集中(图5d)。
图4
图4
900 ℃热暴露100 h后CSI下方横截面的原始形貌、相图、IPF图像以及KAM图
Fig.4
Original morphology (a), phase map (b), IPF image (c) and KAM image (d) of the cross-section below CSI after thermal exposure for 100 h at 900 oC
图5
图5
在900 ℃热暴露4500 h后CSI下方横截面的原始形貌、相图、IPF图像以及KAM图
Fig.5
Original morphology (a), phase map (b), IPF image (c) and KAM image (d) of the cross-section below CSI after thermal exposure for 4500 h at 900 oC
图6
图6
在900 ℃热暴露1000 h后SRZ中和在1000 ℃热暴露1000 h后SDZ中的TEM 图像和选区衍射花样(SAD)
Fig.6
TEM images and selected diffraction patterns (SAD) in the interdiffusion zone (a, b) SRZ after 1000 h of thermal exposure at 900 oC and (c, d) SDZ after 1000 h of thermal exposure at 1000 oC
2.3.2 在1000 ℃热暴露后涂层/基体界面微观结构的演变
图7给出了在1000 ℃热暴露不同时间后CSI下方的微观组织。结果表明,热暴露100 h后IDZ、SRZ的厚度分别为4、18 µm,在SRZ中析出少量M23C6,SDZ由球化及合并长大的γ/γ'相组成(图7a)。热暴露200 h后,IDZ和SRZ的厚度分别增大到8、22 µm。SDZ中SRZ/SDZ界面附近的γ'相沿垂直于CSI的方向合并长大(图7b)。热暴露500 h后IDZ的厚度增大,SRZ组织大量消耗,在胞状组织下方出现片状的γ'相和少量富Cr相颗粒聚集(图7c)。热暴露1000h后胞状组织几乎消失,SDZ中富Cr相在γ'相中富集析出(图7d)。热暴露2000 h后IDZ由γ相和少量颗粒状三次γ'相组成,IDZ紧邻SDZ,界面处有少量粗化的γ'相(图7e)。热暴露4500 h后IDZ中的三次γ'相弥散分布在γ相中,厚度约为53 µm,颗粒状富Cr相在SDZ中富集析出(图7f)。与在900 ℃热暴露相比,在1000 ℃热暴露后CSI下方微观组织的演化更快。在热暴露时间相同的情况下,热暴露温度的提高使IDZ的厚度增大,胞状组织退化加快,SDZ中的γ'相筏化速率提高。同时,热暴露在1000 h以内SDZ中析出的富Cr相减少,热暴露1000 h后富Cr相的析出溶解明显加速。
图7
图7
在1000 ℃热暴露不同时间后CSI横截面BSE图像
Fig.7
CSI cross-sectional BSE image after thermal exposure for different time at 1000 oC
(a) 100 h, (b) 200 h, (c) 500 h, (d) 1000 h, (e) 2000 h, (f) 4500 h
图8和图9给出了在1000 ℃热暴露100和4500 h后对CSI附近的EBSD分析。在1000 ℃热暴露100 h后在CSI下观察到胞状再结晶(图8c),在再结晶/基体界面附近析出σ相(图8b)。结合元素的能谱可知,Cr、Co在IDZ富集,Ni、Al在SRZ中富集,在基体和涂层/基体界面附近出现应力集中(图8d)。与在900 ℃热暴露100 h对比,在1000 ℃热暴露后CSI下方的再结晶晶粒较大,析出相较多。热暴露4500 h后CSI下方再结晶的厚度增大(图9c),再结晶/基体界面的下方析出了σ相(图9b),基体中出现较小的应力集中(图9d)。此时,在IDZ/SDZ界面下方出现少量的富Cr、Co。与在900 ℃热暴露4500 h相比,在1000 ℃热暴露后IDZ/SDZ界面下方的析出相较少,位置距CSI界面较远。
图8
图8
在1000 ℃下热暴露100 h后CSI下方横截面的原始形貌、相图、IPF图像以及KAM图
Fig.8
Original morphology (a), phase map (b), IPF image (c) and KAM image (d) of the cross-section below CSI after thermal exposure for 100 h at 1000 oC
图9
图9
在1000 ℃热暴露4500 h后CSI下方横截面的原始形貌、相图、IPF图像以及KAM图
Fig.9
Original morphology (a), phase map (b), IPF image (c) and KAM image (d) of the cross-section below CSI after thermal exposure for 4500 h at 1000 oC
在不同温度热暴露后涂层的退化程度不同,其原因是:1) 与在900 ℃热暴露相比,在1000 ℃热暴露相同时间后涂层表面的元素与O2反应更剧烈,有利于在表面生成氧化层。但是,热暴露一段时间后Al的供给不足,使尖晶石形核而导致氧化层对涂层的保护减弱,使涂层的退化加快。2) 与在900 ℃热暴露相比,在1000 ℃热暴露相同时间后基体中的碳化物溶解加快。受涂层/基体间的化学梯度和温度的影响,向涂层内扩散的Ti元素含量提高,使β相退化为γ/γ′相。随着氧化反应和互扩散的进行,最后退化为γ相(β + γ → β + γ +(γ') → (γ') + γ)。这表明,热暴露温度的提高使上、下β贫化区的厚度增大和BC有效区中β相的体积分数降低。3) 与在900 ℃热暴露相比,在1000 ℃热暴露相同时间相变速率提高和界面反应加快,使CSI的体积收缩增大。同时,热暴露温度的提高使元素扩散速率随之提高。元素相互扩散不均匀而使空位的数量增加,最终使CSI界面处出现较多的孔洞。
制备样品时的喷砂处理使基体合金表面产生塑性变形,并在变形区内储存一定数量的位错。将试样热暴露后γ/γ'相界面吸收位错,晶界附近的γ相中生成亚晶。随着热暴露时间的延长,相同取向的亚晶相互合并而成为再结晶的核心[32]。同时,涂层/基体互扩散使基体合金中γ/γ'相的转变加快,从而使再结晶形核。与在900 ℃热暴露相比,在1000 ℃热暴露使上述过程加快。因此,在相同条件下在1000 ℃热暴露,生成的再结晶晶粒较大。再结晶晶界的高溶解度和强扩散能力使再结晶晶界下方的γ'相筏化速率提高,引起γ相过饱和[33,34]。大量不稳定的γ相形成条纹状释放出元素和能量而使结构稳定,再结晶晶界下方将形成胞状结构的组织。受涂层/合金体系总界面能的降低和晶粒界面曲率不同的影响,使再结晶晶界沿着晶粒界面曲率中心方向不断吞噬胞状组织,使再结晶长大。随实验时间延长,在这两个温度热暴露生成的再结晶厚度增大,其趋势均遵循二次抛物线规律。在1000 ℃热暴露,较高的温度使热暴露初期再结晶形核较快。随着热暴露时间的延长在900 ℃热暴露再结晶形核长大的速率逐渐高于在1000 ℃热暴露的形核长大速率(图10)。这表明,热暴露温度不是再结晶形核长大的驱动力。根据图2和表3,在1000 ℃热暴露4500 h后下β贫化区与互扩散区中Al、Cr元素的浓度相近,而在900 ℃热暴露相同时间后,两区的浓度仍然有较大的不同。这表明,元素扩散为再结晶形核和长大提供驱动力。但是,热暴露2000 h后再结晶形核速率远低于热暴露500 h内再结晶的形核速率。这表明喷砂产生的塑性变形为热暴露初期的再结晶形核长大提供了主要的驱动力[35~37]。
图10
图10
IDZ + SRZ厚度之和随热暴露温度和时间的变化
Fig.10
Evolution of thickness of IDZ + SRZ with thermal exposure temperature and time
在900 ℃热暴露初期,温度和涂层/基体化学梯度使元素互扩散和基体中的碳化物溶解。此时,基体中的Ni、Ti等元素向外扩散,Al、Cr和Co从涂层中扩散到基体中,较多的Al分配到γ'相中,Cr、Co倾向于分配到γ相中。这些因素,使基体中的难溶元素富集,互扩散区中未溶解的Cr与难溶元素结合生成富Cr相:
与在900 ℃热暴露相比,在1000 ℃热暴露初期再结晶形核长大较快,在相同的时间内互扩散区内面缺陷的增多促进元素向SDZ扩散,使热暴露初期析出比在900 ℃热暴露更少的富Cr相。
图11
图11
在<001>方向上受力分解的示意图
Fig.11
Schematic diagram of force decomposition in the direction of <001>
在900 ℃热暴露初期,涂层/基体互扩散反应使涂层/基体界面下方逐渐形成IDZ区和SDZ区。随着热暴露时间的延长SDZ中Al元素含量的提高和Ni元素含量的降低,加快了SDZ中γ + [Al]→γ'、γ→[Ni]+γ'的转变和使SDZ中γ'相的含量提高。此时,γ/γ'相界面面积的最小化使γ'相粗化。同时,在热暴露过程中γ'相的长大遵循Ostwald熟化理论,使SDZ中γ'相的尺寸较大。在热暴露初期基体中γ/γ'相的立方度较高,较大的γ/γ'相界面能使SDZ中γ'相的粗化加快[40]。当IDZ由连续γ相构成、SRZ由胞状组织组成时,涂层中Al元素向基体扩散速率的降低使SRZ中的Al向SDZ扩散减缓[23]。随着热暴露时间的延长,IDZ厚度的增大加快了SDZ中Ni的流失,增加了SDZ中的γ'相。在扩散反应和γ/γ'相界面面积最小化的作用下在SRZ的下方形成垂直于涂层/基体界面的条状γ'相[41]。热暴露温度的提高使元素的扩散加快,也使上述过程加快。同时,热暴露温度越高γ'相的生长越快,γ/γ'相间的弹性应力促进γ'相连接形成筏排组织[42]。SRZ中胞状组织的退化使SDZ中Al、Cr元素的含量提高,条状γ'相区域厚度的增大使其下方出现合并长大的γ'相。当胞状组织几乎消失时,SDZ中的Al元素向IDZ扩散。IDZ中沿着Al元素扩散方向析出三次γ'相,使SDZ中合并长大的γ'相区域的厚度减小和条状γ'相区域的厚度增大。
3 结论
(1) 将DZ411镍基高温合金的MCrAlY热障涂层体系在不同温度热暴露,随着热暴露时间的延长涂层发生退化,形成上β贫化区、下β贫化区和互扩散区。在BC有效区β相的体积分数降低,在涂层/基体界面附近出现Kirkendall孔洞。随着暴露温度的提高元素扩散加剧,以上过程随之加剧。
(2) 长时热暴露后,在涂层/基体界面下方生成IDZ、SRZ、SDZ和富Cr相。在热暴露初期生成M23C6,在热暴露后期生成M23C6和σ相,在SDZ中富Cr相沿着与涂层/基体界面呈45°和135°角的方向析出。与在900 ℃热暴露相比,在1000 ℃热暴露后IDZ、SDZ的厚度较大,且在热暴露后期SRZ大量退化几乎消失,富Cr相的析出向基体内延伸。
(3) 长时热暴露后再结晶晶界下方的基体中立方状γ'相依次发生球化和相互联接成筏形。随着热暴露温度的提高和时间的延长,筏化层不断长大并向基体内延伸。
参考文献
A model for the creep deformation behaviour of nickel-based single crystal superalloys
[J].
Recent progress in research and development of nickel-based single crystal superalloys
[J].
镍基单晶高温合金的研发进展
[J].
Service induced degradation and rejuvenation of gas turbine blades
[J].
燃气涡轮叶片的服役损伤与修复
[J].
Service temperature evaluation based on microstructural degradation of gas turbine blade after cumulative operation for 2700 h
[J].
基于累积服役2700 h后某燃气轮机叶片显微组织的退化判断其服役温度
[J].
Advances in coating design for high-performance gas turbines
[J].
Preparation and hot corrosion behavior of a NiCrAlY + AlNiY composite coating
[J].In this study, a NiCrAlY?+?AlNiY composite coating was prepared by arc ion plating technique and subsequent annealing treatment. Cyclic hot corrosion tests of the composite coating and a reference NiCrAlY coating coated with mixed salts of Na<sub>2</sub>SO<sub>4</sub>?+?K<sub>2</sub>SO<sub>4</sub> and Na<sub>2</sub>SO<sub>4</sub>?+?NaCl were carried out at 700?°C. The results indicated that the composite coating performed better against the corrosion due to the gradient element distribution in Al-enriched outer layer and Cr-enriched inner layer. The corrosion mechanisms for the two coatings were also discussed.
Isothermal and cyclic oxidation behavior of free standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying
[J].
Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy
[J].
Materials design for the next generation thermal barrier coatings
[J].
In situ synthesis of α-alumina layer at top yttrium-stabilized zirconia thermal barrier coatings for oxygen barrier
[J].
Oxidation resistance: one barrier to moving beyond Ni-base superalloys
[J].
Thermal barrier coatings for aeroengine applications
[J].
Thermal barrier coatings for gas-turbine engine applications
[J].Hundreds of different types of coatings are used to protect a variety of structural engineering materials from corrosion, wear, and erosion, and to provide lubrication and thermal insulation. Of all these, thermal barrier coatings (TBCs) have the most complex structure and must operate in the most demanding high-temperature environment of aircraft and industrial gas-turbine engines. TBCs, which comprise metal and ceramic multilayers, insulate turbine and combustor engine components from the hot gas stream, and improve the durability and energy efficiency of these engines. Improvements in TBCs will require a better understanding of the complex changes in their structure and properties that occur under operating conditions that lead to their failure. The structure, properties, and failure mechanisms of TBCs are herein reviewed, together with a discussion of current limitations and future opportunities.
Long-term oxidation of MCrAlY coatings at 1000 oC and an Al-activity based coating life criterion
[J].
Microstructural evolution of the NiCrAlY/CrON duplex coating system and its influence on mechanical properties
[J].
Cyclic oxidation and interdiffusion behavior of a NiAlDy/RuNiAl coating on a Ni-based single crystal superalloy
[J].
On the microstructural instability of an experimental nickel-based single-crystal superalloy
[J].
Interdiffusion in MCrAlY coated nickel-base superalloys
[J].
Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors
[J].
Precipitation phases in the nickel-based superalloy DZ 125 with YSZ/CoCrAlY thermal barrier coating
[J].
Microstructural evolution of NiCoCrAlY coated directionally solidified superalloy
[J].
Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation
[J].MCrAlY (M=Ni and/or Co) overlay coating is widely used as a protective coating against high temperature oxidation and corrosion. However, due to its big difference in chemical composition with the underlying superalloy, elements interdiffusion occurs inevitably. One of the direct results is the formation of interdiffusion zone (IDZ) and secondary reaction zone (SRZ) with a high density of fine topological closed-packed phases (TCPs), weakening dramatically the mechanical properties of the alloy substrate. It is by now the main problem of modern high-temperature metallic coatings, but there are still hardly any reports studying the formation, growth and transformation of IDZ and SRZ in deep, as well as the precipitation of TCPs. In this work, a typical NiCrAlY coating is deposited by arc ion plating on a single-crystal superalloy N5. Elements interdiffusion between them and its relationship on microstructure were clarified. Cr rather than Al from the coating diffuses into the alloy at high temperatures and segregates immediately beneath their interface, contributing largely to the formation of IDZ. Simultaneously, diffusion of Ni from the deep alloy to IDZ leads to the formation and continuous expansion of SRZ.
Spontaneous reaction formation of Cr23C6 diffusion barrier layer between nanocrystalline MCrAlY coating and Ni-base superalloy at high temperature
[J].
High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating I: microstructure evolution
[J].
MCrAlY coating design based on oxidation–diffusion modelling. Part II: lifing aspects
[J].
MCrAlY coating design based on oxidation-diffusion modelling. Part I: microstructural evolution
[J].
Some aspects of elemental behaviour in HVOF MCrAlY coatings in high-temperature oxidation
[J].
Temperature-dependent evolution mechanism of interface microstructure between gradient MCrAlY coatings and nickel-based superalloy
[J].
Thermo-mechanical analysis of TBC-film cooling system under high blowing ratio considering the effects of curvature
[J].
Microstructure evolution and elemental diffusion behavior near the interface of Cr2AlC and single crystal superalloy DD5 at elevated temperatures
[J].
Coating-associated microstructure evolution and elemental interdiffusion behavior at a Mo-rich nickel-based superalloy
[J].
Driving force for grain boundary migration during alloying by DIGM and DIR in binary systems
[J].
The recrystallization of nickel-base superalloys
[J].
Microstructural investigation of CoNiCrAlY coated Ni-based single crystal superalloy prepared by LPPS
[J].
The recrystallization mechanism of typical Ni-based superalloys
[J].
典型镍基高温合金的再结晶机理
[J].
Nanoindentation characterization of the surface mechanical properties of a 17-4PH stainless steel substrate treated with grit blasting and coated with a Cr3C2-NiCr coating
[J].
Anisotropy of interface characteristics between NiCoCrAlY coating and a hot corrosion resistant Ni-based single crystal superalloy during thermal exposure at different temperatures
[J].
Effects of the orientation relationships between TCP phases and matrix on the morphologies of TCP phases in Ni-based single crystal superalloys
[J].
Designing nickel base alloys for microstructural stability through low γ-γ′ interfacial energy and lattice misfit
[J].
Topological phase inversion after long-term thermal exposure of nickel-base superalloys: Experiment and phase-field simulation
[J].
Microstructural evolution of a single crystal nickel-base superalloy during thermal exposure
[J].
/
〈 |
|
〉 |
