Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (6): 443-454    DOI: 10.11901/1005.3093.2024.334
  研究论文 本期目录 | 过刊浏览 |
蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制
姜爱龙1,3, 谭炳治2,4, 庞建超2(), 石锋4, 张允继1,3, 邹成路2, 李守新2, 伍启华1,3, 李小武4, 张哲峰2
1.内燃机与动力系统全国重点实验室 潍坊 261061
2.中国科学院金属研究所 沈阳 110016
3.潍柴动力股份有限公司 潍坊 261061
4.东北大学材料科学与工程学院 沈阳 110819
Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms
JIANG Ailong1,3, TAN Bingzhi2,4, PANG Jianchao2(), SHI Feng4, ZHANG Yunji1,3, ZOU Chenglu2, LI Shouxin2, WU Qihua1,3, LI Xiaowu4, ZHANG Zhefeng2
1.State Key Laboratory of Engine and Powertrain System, Weifang 261061, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Weichai Power Co., Ltd., Weifang 261061, China
4.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.
Ailong JIANG, Bingzhi TAN, Jianchao PANG, Feng SHI, Yunji ZHANG, Chenglu ZOU, Shouxin LI, Qihua WU, Xiaowu LI, Zhefeng ZHANG. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. Chinese Journal of Materials Research, 2025, 39(6): 443-454.

全文: PDF(2066 KB)   HTML
摘要: 

研究了蠕墨铸铁RuT300和RuT450的室温显微组织、拉伸性能、低周疲劳性能和损伤机制,并进行了比较。结果表明:RuT450的抗拉强度和低周疲劳寿命均高于RuT300,可归因于珠光体与铁素体含量的不同。RuT450中含量较高的片层珠光体产生严重的拉压循环应力不对称。其结果是,疲劳裂纹优先在石墨与铁素体构成的团簇间扩展,而珠光体含量的提高影响蠕墨铸铁材料的抗拉强度和低周疲劳寿命的提高。使用Basquin&Coffin-Manson模型可较为准确地预测蠕墨铸铁低周疲劳的寿命。

关键词 金属材料蠕墨铸铁微观组织拉伸性能低周疲劳损伤机制    
Abstract

The microstructure, tensile properties, low-cycle fatigue properties and corresponding damage mechanisms of typical compacted graphite cast irons RuT300 and RuT450 for engine cylinder head and block were studied at room temperature. The differences in properties and damage mechanisms between the two materials were systematically compared. The results show that the tensile strength and low-cycle fatigue life of RuT450 are higher than those of RuT300, but the difference of low-cycle fatigue life is small, which is mainly due to the difference in pearlite and ferrite content. The high content of lamellar pearlite in RuT450 leads to more serious tension-compression cyclic stress asymmetry. Fatigue cracks preferentially propagate between clusters composed of graphite and ferrite, and the increase of pearlite content has a certain effect on improving the tensile strength and low cycle fatigue life of compacted graphite cast irons. The Basquin & Coffin-Manson model can effectively predict the low-cycle fatigue life of compacted graphite cast irons.

Key wordsmetallic materials    compacted graphite cast iron    microstructure    tensile property    low cycle fatigue    damage mechanism
收稿日期: 2024-08-15     
ZTFLH:  TG142.1  
基金资助:内燃机与动力系统全国重点实验室开放课题(skler202101);国家自然科学基金(52130002);国家自然科学基金(52321001)
通讯作者: 庞建超,副研究员,jcpang@imr.ac.cn,研究方向为材料疲劳与断裂
Corresponding author: PANG Jianchao, Tel: (024)83978779, E-mail: jcpang@imr.ac.cn
作者简介: 姜爱龙,男,1982年生,正高级工程师
MaterialCSiSnCuMnSFe
RuT3004.12.220.0350.390.190.051Bal.
RuT4503.812.200.090.800.320.01Bal.
表1  RuT300和RuT450的化学成分
图1  拉伸和低周疲劳试样的尺寸
图2  RuT300和RuT450的显微组织
MaterialUTS / MPaYS / MPaEF / %E / GPa
RuT3004013045.3135
RuT4504483202.3128
表2  RuT300和RuT450的拉伸性能
图3  RuT300和RuT450的工程应力-应变曲线
Total strain amplitude (Δεt/2) / %RuT300 RuT450
0.1105105-
0.1510000258901342723136
0.2586790033822254
0.25--2682791
0.3569282--
表3  RuT300和RuT450的低周疲劳寿命
图4  RuT300和RuT450的总应变-疲劳寿命关系
图5  RuT300样品的拉伸断口[25]
图6  RuT450样品的拉伸断口
图7  RuT300和RuT450的循环应力响应曲线
图8  RuT300和RuT450不同周次的滞回环
图9  RuT450和RuT300不同应变幅的半寿命滞回环
图10  RuT300的疲劳断口(εt = 0.3%, Nf = 569周次)
图11  RuT450的疲劳断口(εt = 0.2%, Nf = 3382周次)
图12  RuT300的典型疲劳断口纵剖面
图13  RuT450的典型疲劳断口纵剖面
图14  RuT300和RuT450的疲劳断裂方式
图15  蠕墨铸铁RuT300和RuT450疲劳寿命的Basquin & Coffin-Manson 拟合曲线(a) RuT300 (b) RuT450
图16  RuT300和RuT450的低周疲劳寿命预测结果
1 Wang L, Liu H, Huang C, et al. Three-dimensional transient cutting tool temperature field model based on periodic heat transfer for high-speed milling of compacted graphite iron[J]. J. Clean. Prod., 2021, 322: 129106
2 Guo Y, Mann J B, Yeung H, et al. Enhancing tool life in high-speed machining of compacted graphite iron (cgi) using controlled modulation[J]. Tribol. Lett., 2012, 47(1): 103
3 Niu J, Huang C, Su R, et al. Constitutive equation of compacted graphite iron (GJV450) at high temperature and high strain Rate[J]. Int. J. Adv. Manuf. Tech., 2021, 113(7-8): 2163
4 Lim C H, Goo B C. Development of compacted vermicular graphite cast iron for railway brake discs[J]. Met. Mater. Int., 2011, 17(2): 199
5 Hosdez J, Limodin N, Najjar D, et al. Fatigue crack growth in compacted and spheroidal graphite cast irons[J]. Int. J. Fatigue, 2020, 131: 105319
6 Jing G X, Zhang M X, Qu S, et al. Investigation into diesel engine cylinder head failure[J]. Eng. Fail. Anal., 2018, 90: 36
7 Li Y, Liu J, Zhong G, et al. Analysis of a diesel engine cylinder head failure caused by casting porosity defects[J]. Eng. Fail. Anal., 2021, 127: 105498
8 Yang Z L, Zhang D P, Yuan T Y, et al. Study on strength life analysis process of gas turbine disk[J]. J. Eng. Therm. Energy Power, 2021, 36(9): 195
8 杨子龙, 张大鹏, 苑天宇 等. 燃气轮机涡轮盘强度寿命分析流程研究[J]. 热能动力工程, 2021, 36(9): 195
9 Luo Y X, Li J X, Zhao M X, et al. Research on the method of low-cycle fatigue life prediction and reliability evaluation of gas turbine discs based on AK-MCS[J]. J. Xi'an Jiaotong Univ., 2024, 58(04): 107
9 罗宇轩, 李金星, 赵名星 等. 采用AK-MCS的燃气轮机轮盘疲劳寿命预测及可靠性评估[J]. 西安交通大学学报, 2024, 58(04): 107
10 Shao C W, Zhang P, Liu R, et al. Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction[J]. Acta Mater., 2016, 103: 781
11 Sharifi S M H, Saeidi Googarchin H, Forouzesh F. Three dimensional analysis of low cycle fatigue failure in engine part subjected to Multi-axial variable amplitude thermo-mechanical load[J]. Eng. Fail. Anal., 2016, 62: 128
12 Yang W J, Pang J C, Wang L, et al. Thermo-mechanical fatigue life prediction based on the simulated component of cylinder head[J]. Eng. Fail. Anal., 2022, 135: 106105
13 Zhang M X, Pang J C, Meng L J, et al. Study on thermal fatigue behaviors of two kinds of vermicular graphite cast irons[J]. Mater. Sci. Eng. A, 2021, 814: 141212
14 Ribeiro B C M, Rocha F M, Andrade B M, et al. Influence of different concentrations of silicon, copper and tin in the microstructure and in the mechanical properties of compacted graphite iron[J]. Mater. Res., 2020, 23(2): e20190678
15 Wu Y Y, Li J P, Zhang Y J, et al. Effect of heat treatment on mechanical properties and thermal conductivity of RuT300 vermicular graphite cast iron[J]. Trans. Mater. Heat Treat., 2017, 38(2): 143
15 武岳岳, 李建平, 张延京 等. 热处理工艺对RuT300蠕墨铸铁力学性能与导热性能的影响[J]. 材料热处理学报, 2017, 38(2): 143
16 Chen Y, Pang J C, Li S X, et al. Damage mechanism and fatigue strength prediction of compacted graphite iron with different microstructures[J]. Int. J. Fatig., 2022, 164: 107126
17 Chen Y, Pang J C, Zou C L, et al. High-temperature fatigue damage mechanism and strength prediction of vermicular graphite iron[J]. Int. J. Fatig., 2023, 168: 107477
18 Meng L J, Zhang M X, Li Y J, et al. Tensile and fatigue properties of vermicular graphite cast irons RuT400 and RuT450[J]. Shanghai Metals, 2020, 42(4): 18
18 孟令健, 张孟枭, 李玉娟 等. 蠕墨铸铁RuT400与RuT450的拉伸与疲劳性能[J]. 上海金属, 2020, 42(4): 18
19 Fan Y N, Shi H J, Tokuda K. A generalized hysteresis energy method for fatigue and Creep-fatigue life prediction of 316L(N)[J]. Mater. Sci. Eng. A, 2015, 625: 205
20 Qiu Y, Pang J C, Li S X, et al. Influence of temperature on the Low-cycle fatigue properties of compacted graphite iron[J]. Int. J. Fatig., 2018, 117: 450
21 Lyu Y, Sun Y, Liu S, et al. Effect of tin on microstructure and mechanical properties of compacted graphite iron[J]. Int. J. Cast Metals Res., 2015, 28(5): 263
22 Tao D, Li J P, Yang Z, et al. Effect of pearlite content on high-temperature mechanical properties and thermophysical properties of vermicular graphite cast iron[J]. Trans. Mater. Heat Treat., 2018, 39(6): 83
23 Du C, Wang X, Hu L. Microstructure, mechanical properties and residual stress of a 2205DSS/Q235 rapidly formed LBW joint[J]. J. Mater. Proc. Technol., 2018, 256: 78
24 Qiu Y, Pang J C, Li S X, et al. Influence of thermal exposure on microstructure evolution and tensile fracture behaviors of compacted graphite iron[J]. Mater. Sci. Eng. A, 2016, 664: 75
25 Qu Y. Investigations on tensile and fatigue properties and damage mechanisms of compacted graphite irons used in diesel engine cylinder heads[D]. Beijing: University of Chinese Academy of Science, 2017
25 邱 宇. 柴油机缸盖用蠕墨铸铁的拉伸与疲劳性能及损伤机制研究[D]. 北京: 中国科学院大学, 2017
26 Yin Y, Tu Z, Zhou J, et al. 3D quantitative analysis of graphite morphology in ductile cast iron by X-ray microtomography[J]. Metall. Mater. Trans. A, 2017, 48(8): 3794
27 Coffin L. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Trans. Am. Soc. Mech. Eng., 1954, 76(6): 931
28 Manson S S. Behavior of materials under conditions of thermal stress[R]. National Advisory Committee for Aeronautics, Report 1170. Lewis Flight Propulsion Laboratory, 1954
29 Wang M, Pang J C, Zhang M X, et al. Thermo-mechanical fatigue behavior and life prediction of the Al-Si piston alloy[J]. Mater. Sci. Eng. A, 2018, 715: 62
[1] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[2] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[3] 王恒霖, 丁汉林, 柴锋, 罗小兵, 王子健, 项重辰. 调质热处理对不同轧制温度的含Cu低合金高强钢力学性能的影响[J]. 材料研究学报, 2025, 39(6): 401-412.
[4] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.
[5] 胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
[6] 李海斌, 徐惠婷, 唐伟, 吕海波, 帅美荣. 热轧碳钢/不锈钢复合板结合界面电解腐蚀的毛细效应[J]. 材料研究学报, 2025, 39(5): 362-370.
[7] 任学昌, 安菊, 付宁, 姚小庆, 杨镇瑜, 陈泓锦. 在模拟太阳光下溶剂热时长对MIL-88A(Fe)活化过一硫酸盐降解罗丹明B催化性能的影响[J]. 材料研究学报, 2025, 39(5): 329-342.
[8] 邱玮, 李玉林, 闫瑞, 李雅文, 陈维, 甘浪, 任延杰, 陈荐. Al对镁空气电池用挤压态Mg-Al-Ca-Mn合金阳极腐蚀和放电性能的影响[J]. 材料研究学报, 2025, 39(5): 389-400.
[9] 吴玉程, 左彤, 谭晓月, 朱晓勇, 刘家琴. 第一壁自钝化W-Cr-Zr合金的氧化行为和氧化层结构[J]. 材料研究学报, 2025, 39(5): 343-352.
[10] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[11] 胥聪敏, 孙姝雯, 朱文胜, 陈志强, 李城臣. 三元复配杀菌剂对P110钢腐蚀行为的影响[J]. 材料研究学报, 2025, 39(4): 281-288.
[12] 符纯国, 徐世伟, 杨晓益, 李萌蘖. 焊接热源模式对5083-H111铝合金接头性能的影响[J]. 材料研究学报, 2025, 39(4): 305-313.
[13] 冉子祚, 张爽, 苏兆翼, 王阳, 邹存磊, 赵亚军, 王增睿, 姜薇薇, 董晨希, 董闯. 基于团簇式的316不锈钢成分优化及其实验验证[J]. 材料研究学报, 2025, 39(3): 207-216.
[14] 钟伟杰, 焦东玲, 刘仲武, 刘娜, 许文勇, 李周, 张国庆. 热等静压态镍基高温合金的高温氧化[J]. 材料研究学报, 2025, 39(3): 172-184.
[15] 张慧芳, 吴浩, 肖传民, 李奇, 谢君, 李金国, 王振江, 于金江. 热处理对一种 γʹ 沉淀强化钴基高温合金拉伸性能的影响[J]. 材料研究学报, 2025, 39(3): 198-206.