Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (8): 561-568    DOI: 10.11901/1005.3093.2023.441
  研究论文 本期目录 | 过刊浏览 |
高速列车车轴DZ2钢的强韧性关系和低温脆性
刘硕1,2, 张鹏1,2(), 王斌1,2, 汪开忠3, 许自宽1, 胡芳忠3, 段启强1, 张哲峰1,2
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.马鞍山钢铁股份有限公司技术中心 马鞍山 243000
Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2
LIU Shuo1,2, ZHANG Peng1,2(), WANG Bin1,2, WANG Kaizhong3, XU Zikuan1, HU Fangzhong3, DUAN Qiqiang1, ZHANG Zhefeng1,2
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Technology Center, Ma'anshan Iron and Steel Co., Ltd., Ma'anshan 243000, China
引用本文:

刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
Shuo LIU, Peng ZHANG, Bin WANG, Kaizhong WANG, Zikuan XU, Fangzhong HU, Qiqiang DUAN, Zhefeng ZHANG. Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2[J]. Chinese Journal of Materials Research, 2024, 38(8): 561-568.

全文: PDF(12601 KB)   HTML
摘要: 

调控高速列车车轴DZ2钢的回火温度,对其进行拉伸实验和常、低温冲击试验并观察和分析其微观组织的,研究了这种钢的强韧性关系和低温脆性。结果表明:随着回火温度从430℃提高到700℃,DZ2钢的抗拉强度从1357 MPa降低到761 MPa,断后延伸率从11.7%提高到28.4%,室温冲击功从34.3 J提高到98.7 J,低温冲击功从24 J提高到90.3 J。这表明,回火温度降低对其冲击功的影响逐渐减弱,低温冲击功下降最低只有8%,其原因是碳化物的球化改变了微观变形行为。在满足室温力学性能标准的情况下,调整回火温度可改善这种钢的低温冲击韧性。

关键词 金属材料车轴钢DZ2钢回火热处理抗拉强度冲击功低温脆性    
Abstract

Impact toughness and its low-temperature transformation are key indicators of high-speed railway axle materials, which are closely related to the microstructure of the material. The embrittlement degree of materials with different microstructures at low temperatures also varies. Aiming to find a way to optmize the strength-toughness relationship of the relevant steel, the effect of adjusting the tempering temperature on the strength-toughness relationship of DZ2 steel, which was newly designed and developed at home for high-speed railway axle, was studied via tensile tests, room- and low-temperature impact tests, as well as observation and analysis of the microstructure evolution of the steel. Then the performance changes of the steel during the tempering treatment process were explained. The results indicate that as the tempering temperature increases, the tensile strength gradually decreases from 1357 MPa to 761 MPa, the elongation after fracture increases from 11.7% to 28.4%, the room temperature impact energy gradually increases from 34.3 J to 98.7 J, and the low temperature impact energy gradually increases from 24 J to 90.3 J. However, the impact of temperature reduction on the impact energy gradually weakens, the minimum impact energy decrease percentage of low-temperature is 8%. The transformation trend of these properties is closely related to the micro-scale deformation mechanism changes caused by the gradual spheroidization of carbides. It can be concluded from the comprehensive analysis that, while meeting the requirements of room temperature mechanical performance standards, adjusting the tempering temperature can improve the low-temperature impact toughness of the axle steel, to meet the needs of further high-speed railway speed increase and safe operation in harsh environments.

Key wordsmetallic materials    axle steel DZ2    tempering treatment    tensile strength    impact energy    low-temperature brittleness
收稿日期: 2023-09-06     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划(2022YFB3705203)
通讯作者: 张 鹏,研究员,pengzhang@imr.ac.cn,研究方向为钢铁材料疲劳与断裂
Corresponding author: ZHANG Peng, Tel: 18624094832, E-mail: pengzhang@imr.ac.cn
作者简介: 刘 硕,男,1993年生,博士生
ElementCSiMnPSCrNiMoVAlCu
Content0.24~0.320.20~0.400.60~0.80≤ 0.010≤ 0.0100.90~1.200.50~1.500.20~0.30≤ 0.060.010~0.040≤ 0.20
表1  高速列车车轴钢DZ2钢的化学成分
图1  DZ2钢在不同温度回火后的金相组织
图2  DZ2钢在不同温度回火后的显微组织TEM像和碳化物形貌
图3  DZ2钢材料在不同温度回火后组织中碳化物的相关参数与回火温度的关系
图4  DZ2钢在630℃回火后的透射电镜显微组织照片和 EDS面扫描照片
Tempering temperature430oC500oC560oC630oC700oC
Ultimate tensile strength (UTS) / MPa135712241120898761
Fracture elongation / %11.714.017.020.728.4
Room temperature impact energy / J34.352.355.79098.7
Low temperature impact energy / J2439.743.371.390.3
表2  在不同温度回火后样品的拉伸性能和冲击性能
图5  DZ2钢在不同温度回火后的拉伸性能和静力韧度统计结果
图6  DZ2钢在不同温度回火后的冲击功与回火温度的关系
图7  低温冲击功下降率与回火温度的关系
1 Hirakawa K, Toyama K, Kubota M. The analysis and prevention of failure in railway axles [J]. Int. J. Fatigue, 1998, 20(2): 135
2 Zerbst U, Beretta S, Köhler G, et al. Safe life and damage tolerance aspects of railway axles-A review [J]. Eng. Fract. Mech., 2013, 98: 214
3 Maglio M, Pieringer A, Nielsen J C O, et al. Wheel-rail impact loads and axle bending stress simulated for generic distributions and shapes of discrete wheel tread damage [J]. J. Sound. Vib., 2021, 502: 116085
4 Fintová S, Pokorný P, Fajkoš R, et al. EA4T railway axle steel fatigue behavior under very high-frequency fatigue loading [J]. Eng. Fail. Anal., 2020, 115: 104668
5 Wu S P, Wang D P, Di X J, et al. Strength-toughness improvement of martensite-austenite dual phase deposited metals after austenite reversed treatment with short holding time [J]. Mater. Sci. Eng., 2019, 755A: 57
6 Goritskii V M, Shneiderov G R, Goritskii O V. Effect of impact toughness anisotropy on brittle fracture resistance characteristics of high-strength steels subjected to thermomechanical treatment [J]. Metallurgist, 2020, 64(5-6): 425
7 Song R, Ponge D, Raabe D, et al. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc ste-els [J]. Mater. Sci. Eng., 2006, 441A(1-2) : 1
8 Schneider A S, Kaufmann D, Clark B G, et al. Correlation between critical temperature and strength of small-scale bcc pillars [J]. Phys. Rev. Lett., 2009, 103(10): 105501
9 Mrovec M, Gröger R, Bailey A G, et al. Bond-order potential for simulations of extended defects in tungsten [J]. Phys. Rev., 2007, 75B(10) : 104119
10 Chernov V M, Kardashev B K, Moroz K A. Low-temperature embrittlement and fracture of metals with different crystal lattices-Dislocation mechanisms [J]. Nucl. Mater. Energy, 2016, 9: 496
11 Song G, Aragon N K, Ryu I, et al. Low-temperature failure mechanism of [001] niobium micropillars under uniaxial tension [J]. J. Mater. Res., 2021, 36(12): 2371
12 Wang J, Li W, Zhu X D, et al. Effect of martensite morphology and volume fraction on the low-temperature impact toughness of dual-phase steels [J]. Mater. Sci. Eng., 2022, 832A: 142424
13 Cao W Q, Zhang M D, Huang C X, et al. Ultrahigh charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels [J]. Sci. Rep., 2017, 7(1): 41459
14 Hanamura T, Yin F, Nagai K. Ductile-brittle transition temperature of ultrafine ferrite/cementite microstructure in a low carbon steel controlled by effective grain size [J]. ISIJ Int., 2004, 44(3):610
15 Wu Y, Yin H X, Meng Y, et al. High cycle fatigue properties of high speed axle materials at low temperature [J]. Trans. Mater. Heat. Treat., 2019, 40(4): 54
15 吴 毅, 尹鸿祥, 孟 扬 等. 高速列车车轴材料的低温高周疲劳性能 [J]. 材料热处理学报, 2019, 40(4): 54
16 Ding C C, Zhao M D, Li Z D, et al. Effect of quenching temperature on microstructure and properties of high-speed axle steel [J]. Trans. Mater. Heat Treat., 2018, 39(12): 49
16 丁灿灿, 赵敏丹, 李昭东 等. 淬火温度对高铁车轴用钢组织及性能的影响 [J]. 材料热处理学报, 2018, 39(12): 49
doi: 10.13289/j.issn.1009-6264.2018-0311
17 Wang K Z, Hu F Z, Chen S J, et al. Effect of tempering process on microstructure and mechanical properties of DZ2 axle steel for high speed train [J]. Hot Work. Technol., 2019, 48(16): 162, 168
17 汪开忠, 胡芳忠, 陈世杰 等. 回火工艺对高速列车用DZ2车轴钢组织及力学性能的影响 [J]. 热加工工艺, 2019, 48(16): 162, 168
18 Zou J, Lei M, Wu G, et al. Low temperature toughness of high speed and over loaded trains axle steel EA4T [J]. Foundry Technol., 2016, 37(4): 653, 665
18 邹 静, 雷 旻, 吴 刚 等. 高速重载列车车轴用钢EA4T的低温韧度 [J]. 铸造技术, 2016, 37(4): 653, 665
19 Xue Z F, Zheng Y, Zhao X L, et al. Research on low temperature performance of high speed EA4T axle steel [J]. Mech. Eng. Automat., 2021, (6): 114
19 薛振峰, 郑 毅, 赵兴龙 等. 高速EA4T车轴钢低温性能研究 [J]. 机械工程与自动化, 2021, (6): 114
20 Shang Z X, Ding J, Fan C, et al. Tailoring the strength and ductility of T91 steel by partial tempering treatment [J]. Acta Mater., 2019, 169: 209
doi: 10.1016/j.actamat.2019.02.043
21 Janovec J, Vyrostkova A, Svoboda M. Influence of tempering temperature on stability of carbide phases in 2.6Cr-0.7Mo-0.3V steel with various carbon content [J]. Metall. Mater. Trans., 1994, 25A(2) : 267
22 Zhao S, Song R B, Zhang Y C, et al. Effect of precipitation-induced element partitioning during tempering on mechanical properties of hot-rolled 3Mn steel after intercritical annealing [J]. Mater. Charact., 2023, 205: 113251
23 Zorgani M, Garcia-mateo C, Jahazi M. Microstructural evolution during tempering of an ausformed carbide-free low temperature bainitic steel [J]. Mater. Des., 2021, 210: 110082
24 Brackmann L, Wingender D, Weber S, et al. Influence of hard phase size and spacing on the fatigue crack propagation in tool steels—Numerical simulation and experimental validation [J]. Fatigue Fract. Eng. Mater. Struct., 2023, 46: 3872
25 Zhou T, Prasath Babu R, Hou Z Y, et al. Precipitation of multiple carbides in martensitic CrMoV steels-experimental analysis and exploration of alloying strategy through thermodynamic calculations [J]. Materialia, 2020, 9: 100630
26 Ter Haar G M, Becker T H. Low temperature stress relief and martensitic decomposition in selective laser melting produced Ti6Al4V [J]. Mater. Des. Process. Commun., 2021, 3(1): e138
27 Gil Mur F X, Rodríguez D, Planell J A. Influence of tempering temperature and time on the α'-Ti-6Al-4V martensite [J]. J. Alloys Compd., 1996, 234(2): 287
28 An F C, Wang J J, Zhao S X, et al. Tailoring cementite precipitation and mechanical properties of quenched and tempered steel by nickel partitioning between cementite and ferrite [J]. Mater. Sci. Eng., 2021, 802A: 140686
29 Yong Q L. Second Phase in Steel Materials [M]. Beijing: Metallurgical Industry Press, 2006
29 雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006
30 Gao J W, Yu M H, Liao D, et al. Foreign object damage tolerance and fatigue analysis of induction hardened S38C axles [J]. Mater. Des., 2021, 202: 109488
31 Kasvayee K A, Ghassemali E, Salomonsson K, et al. Strain localization and crack formation effects on stress-strain response of ductile iron [J]. Mater. Sci. Eng., 2017, 702A: 265
32 Deillon L, Fornabaio M, Zagar G, et al. Processing and micro-mechanical characterization of multi-component transition MC carbides in iron [J]. J. Eur. Ceram. Soc., 2021, 41(7): 3937
[1] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[2] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[3] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[4] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[5] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[6] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[7] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[8] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[9] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
[10] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[11] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[12] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[13] 崔运秋, 牛春杰, 吕建骅, 倪维元, 刘东平, 鲁娜. 高温氦离子辐照对钨表面形貌的影响[J]. 材料研究学报, 2024, 38(6): 437-445.
[14] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[15] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.