Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (11): 821-827    DOI: 10.11901/1005.3093.2023.605
  研究论文 本期目录 | 过刊浏览 |
连续挤压工艺对Al-0.5Fe合金组织和性能的影响
孙华辰1,2,3, 张舵1,3(), 刘旭东1,3, 苏峻田1,3, 姜海昌1,3
1 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
3 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Effect of Conform Process on Evolution of Microstructure and Properties of Al-0.5Fe Alloy
SUN Huachen1,2,3, ZHANG Duo1,3(), LIU Xudong1,3, SU Juntian1,3, JIANG Haichang1,3
1 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

孙华辰, 张舵, 刘旭东, 苏峻田, 姜海昌. 连续挤压工艺对Al-0.5Fe合金组织和性能的影响[J]. 材料研究学报, 2024, 38(11): 821-827.
Huachen SUN, Duo ZHANG, Xudong LIU, Juntian SU, Haichang JIANG. Effect of Conform Process on Evolution of Microstructure and Properties of Al-0.5Fe Alloy[J]. Chinese Journal of Materials Research, 2024, 38(11): 821-827.

全文: PDF(12280 KB)   HTML
摘要: 

在Al-0.5Fe合金导线的制备过程引入连续挤压工艺,使用扫描电镜(SEM)、电子背散射衍射(EBSD)和透射电镜(TEM)等手段表征其在连续挤压过程中组织和性能并研究其演变。结果表明:连续挤压1道次后这种合金的抗拉强度和导电率同步提高,抗拉强度由76.3 MPa提高到90.2 MPa,导电率由62.0%IACS(国际电器导体公制度,简称IACS)提高到62.3%IACS。随着连续挤压道次的增加合金的抗拉强度、导电率和初生相等效直径都出现降低的趋势,连续挤压4道次后抗拉强度降低到78.4 MPa,导电率降低到61.95%IACS,初生相等效直径降低到0.31 μm。随着连续挤压道次的增多,组织中第二相尺寸的减小和面积分数的降低使合金的导电率降低。

关键词 金属材料Al-Fe合金连续挤压第二相导电率    
Abstract

There are many hard primary phases in Al-Fe alloy, which are prone to stress concentration during deformation, leading to alloy fracture and significantly increasing the wire breakage rate of aluminum alloy wires. In order to break down the primary secondary phase in the alloy and refine the microstructure of the alloy, this paper introduces the so-called “Conform process” i.e. continuous extrusion process in the preparation of Al-0.5Fe alloy wires. Correspondingly the evolution of the microstructure and properties of Al-0.5Fe alloy were characterized by means of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and tensile testing machine. The results showed that after 1st pass, the tensile strength and EC of the alloy increased simultaneously, with the tensile strength increasing from 76.3 MPa to 90.2 MPa and the electric conductivity (EC) increasing from 62.0% IACS to 62.3% IACS; With the increase of conform passes, the tensile strength, EC, and equivalent size of the primary phase all show a decreasing trend. After 4th pass, the tensile strength decreases to 78.4 MPa, the EC decreases to 61.95% IACS, and the equivalent size of the primary phase decreases to 0.31 μm. Through comparative analysis of the microstructures, it was found that with the increase of Conform passes, the decrease of EC may be ascribed to the gradual decrease in size and area fraction of the secondary phase

Key wordsmetallic materials    Al-Fe alloy    conform    secondary phase    electrical conductivity (EC)
收稿日期: 2023-12-25     
ZTFLH:  TG379  
基金资助:中国博士后科学基金(2022M713215);广西科技重大专项(2023AA08011);中试基地中试验证类项目(2022JH24/10200034)
通讯作者: 张舵,dzhang15s@imr.ac.cn,研究方向为高性能铝合金研发
Corresponding author: ZHANG Duo, Tel: (024)23971985, E-mail: dzhang15s@imr.ac.cn
作者简介: 孙华辰,男,1999年生,硕士生
图1  室温拉伸试样
图2  Al-0.5Fe合金的SEM照片
Conform pass01234
Equivalent diameter / μm1.161.080.900.890.78
表1  Al-0.5Fe合金中初生相的等效直径和面积分数
图3  Al-0.5Fe合金的TEM照片
图4  Al-0.5Fe合金的EBSD结果
Grain size / μmLAB / %HAB / %
Conventional extrusion23.420.179.9
1st pass8.627.272.8
2nd pass6.119.580.5
3rd pass5.818.082.0
4th pass5.410.689.4
表2  Al-0.5Fe合金的晶粒尺寸和大小角晶界占比
图5  Al-Fe合金的GOS图
图6  不同道次Al-0.5Fe合金中再结晶晶粒的比例和几何必须位错密度统计结果(常规挤压为0道次)
图7  不同道次Al-0.5Fe合金的抗拉强度和导电率
图8  Al-0.5Fe合金的TEM照片
Conform pass1234
Area fraction / %> 400 nm1.10.90.580.44
< 400 nm0.450.430.370.30
表3  不同连续挤压道次Al-0.5Fe合金的面积分数
1 Pan L, Bourassa B, Chen X G. Effect of thermomechanical processing on electrical and mechanical properties of aluminum conductor alloys [J]. Mater. Sci. Forum, 2014, 794-796: 1121
2 Yuan W H, Liang Z Y. Effect of Zr addition on properties of Al-Mg-Si aluminum alloy used for all aluminum alloy conductor [J]. Mater. Des., 2011, 32(8-9): 4195
3 Pan L, Liu K, Breton F, et al. Effect of Fe on microstructure and properties of 8xxx aluminum conductor alloys [J]. J. Mater. Eng. Perform., 2016, 25(12): 5201
4 Dorin T, Stanford N, Birbilis N, et al. Influence of cooling rate on the microstructure and corrosion behavior of Al-Fe alloys [J]. Corros. Sci., 2015, 100: 396
5 Murashkin M Y, Sabirov I, Sauvage X, et al. Nanostructured Al and Cu alloys with superior strength and electrical conductivity [J]. J. Mater. Sci., 2016, 51: 33
6 Hou J P. Investigation on high strength-high electrical conductivity mechanisms of Al and Al alloy wires [D]. Shenyang: Northeastern University, 2019
6 侯嘉鹏. 铝及铝合金线高强度高导电率机制研究 [D]. 沈阳: 东北大学, 2019
7 Luo X M, Yu H Y, Li R, et al. Microstructural evolution and mechanical-and electrical-property of cold-drawn and-rolled electrical aluminum wires [J]. Chin. J. Mater. Res., 2018, 32(5): 357
7 罗雪梅, 余虹云, 李 瑞 等. 拉拔和轧制变形铝导线的结构演化及力学与导电性能 [J]. 材料研究学报, 2018, 32(5): 357
doi: 10.11901/1005.3093.2017.181
8 Luo X M, Song Z M, Li M L, et al. Microstructural evolution and service performance of cold-drawn pure aluminum conductor wires [J]. J. Mater. Sci. Technol., 2017, 33(9): 1039
doi: 10.1016/j.jmst.2016.11.018
9 Zhu Y K, Chen Q Y, Wang Q, et al. Effect of stress profile on microstructure evolution of cold-drawn commercially pure aluminum wire analyzed by finite element simulation [J]. J. Mater. Sci. Technol., 2018, 34(7): 1214
doi: 10.1016/j.jmst.2017.07.011
10 Cubero‐Sesin J M, Arita M, Horita Z. High strength and electrical conductivity of Al-Fe alloys produced by synergistic combination of high-pressure torsion and aging [J]. Adv. Eng. Mater., 2015, 17(12): 1792
11 Sauvage X, Bobruk E V, Murashkin M Y, et al. Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al-Mg-Si alloys [J]. Acta Mater., 2015, 98: 355
12 Yuan W H, Liang Z Y, Zhang C Y, et al. Effects of La addition on the mechanical properties and thermal-resistant properties of Al-Mg-Si-Zr alloys based on AA 6201 [J]. Mater. Des., 2012, 34: 788
13 Karabay S. Influence of AlB2 compound on elimination of incoherent precipitation in artificial aging of wires drawn from redraw rod extruded from billets cast of alloy AA-6101 by vertical direct chill casting [J]. Mater. Des., 2008, 29(7): 1364
14 Song W S, Song Z M, Luo X M, et al. Effect of temperature on tensile properties of 6101 Al-alloy wires [J]. Chin. J. Mater. Res., 2020, 34(10): 730
doi: 10.11901/1005.3093.2020.155
14 宋文硕, 宋竹满, 罗雪梅 等. 温度对6101铝合金导线拉伸性能的影响 [J]. 材料研究学报, 2020, 34(10): 730
doi: 10.11901/1005.3093.2020.155
15 Ozdemir F, Witharamage C S, Christudasjustus J, et al. Corrosion behavior of a bulk nanocrystalline Al-Fe alloy [J]. Corros. Sci., 2022, 209: 110727
16 Polmear I J. Light Alloys [M]. 4th ed. Butterworth-Heinemann, 2005
17 Dong C F. Study on microstructures and properties of rapidly solidified Al-Fe-Y/La alloys [D]. Jiaozuo: Henan Polytechnic University, 2010
17 董翠粉. 快速凝固Al-Fe-Y/La合金组织和性能的研究 [D]. 焦作: 河南理工大学, 2010
18 Senkov O N, Froes F H, Stolyarov V V, et al. Microstructure of aluminum-iron alloys subjected to severe plastic deformation [J]. Scr. Mater., 1998, 38(10): 1511
19 Cubero-Sesin J M, Arita M, Horita Z. High strength and electrical conductivity of Al-Fe alloys produced by synergistic combination of high-pressure torsion and aging [J]. Adv. Eng. Mater., 2015, 17(12): 1792
20 Bulutsuz A G, Chrominski W. Incremental severe plastic deformation effect on mechanical and microstructural characteristics of AA6063 [J]. Trans. Indian Inst. Met., 2021, 74(1): 69
21 Hu J M, Teng J, Ji X K, et al. Microstructural characteristic of the Al-Fe-Cu alloy during high-speed repetitive continuous extrusion forming [J]. J. Mater. Eng. Perform., 2016, 25(11): 4769
22 He Y L, Gao F, Song B Y, et al. Production of very fine grained Mg-3%Al-1%Zn alloy by continuous extrusion forming (conform) [J]. Adv. Eng. Mater., 2010, 12(9): 843
23 Hu J M, Teng J, Ji X K, et al. Enhanced mechanical properties of an Al-Mg-Si alloy by repetitive continuous extrusion forming process and subsequent aging treatment [J]. Mater. Sci. Eng., 2017, 695A: 35
24 Kong X X, Zhang H, Ji X K. Microstructures and mechanical properties evolution of an Al-Fe-Cu alloy processed by repetitive continuous extrusion forming [J]. Mater. Sci. Eng., 2014, 612A: 131
25 Hu P H, Song W H, Wang S W, et al. Mechanisms of primary phase refinement and toughness improvement of Cu-2wt%Ag-0.15wt%La alloy through continuous extrusion forming [J]. Mater. Sci. Eng., 2021, 819A: 141521
26 Feng H, Jiang H C, Yan D S, et al. Microstructure and mechanical properties of a CuCrZr welding joint after continuous extrusion [J]. J. Mater. Sci. Technol., 2015, 31(2): 210
doi: 10.1016/j.jmst.2014.03.025
27 Zinoviev A V, Koshmin A N, Chasnikov A Y. Evolution of the microstructure of the copper alloy (DIN-ECu-57) in the deformation zone in the process of pressing conform [J]. Mater. Sci. Forum, 2018, 918: 145
28 Baudin T, Bozzi S, Brisset F, et al. Local microstructure and texture development during friction stir spot of 5182 aluminum alloy [J]. Crystals, 2023, 13(3): 540
29 Kaibyshev R, Shipilova K, Musin F, et al. Continuous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion [J]. Mater. Sci. Eng., 2005, 396A(1-2) : 341
30 Hou J P, Li R, Wang Q, et al. Breaking the trade-off relation of strength and electrical conductivity in pure Al wire by controlling texture and grain boundary [J]. J. Alloys Compd., 2018, 769: 96
31 Kasap S, Capper P. Springer Handbook of Electronic and Photonic Materials [M]. New York: Springer, 2007
[1] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] 尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
[3] 岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
[4] 汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
[5] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[6] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[7] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[8] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[9] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[11] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[12] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[13] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
[14] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[15] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.