Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (8): 601-609    DOI: 10.11901/1005.3093.2014.239
  本期目录 | 过刊浏览 |
Nb-60Ta-2Zr合金在模拟血浆溶液和全血浸泡后表面膜的性质
李慧哲1,李秀梅2,徐坚1,**()
1. 中国科学院金属研究所沈阳材料科学国家(联合)实验室 沈阳 110016
2. 中国医科大学口腔医学院 沈阳 110002
Characterization of Surface Film of Nb-60Ta-2Zr Alloy Immersed in Simulated Plasma Solution and Whole Blood
Huizhe LI1,Xiumei LI2,Jian XU1,*()
1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016
2. School of Stomatology, China Medical University, Shenyang, 110002
引用本文:

李慧哲,李秀梅,徐坚. Nb-60Ta-2Zr合金在模拟血浆溶液和全血浸泡后表面膜的性质[J]. 材料研究学报, 2014, 28(8): 601-609.
Huizhe LI, Xiumei LI, Jian XU. Characterization of Surface Film of Nb-60Ta-2Zr Alloy Immersed in Simulated Plasma Solution and Whole Blood[J]. Chinese Journal of Materials Research, 2014, 28(8): 601-609.

全文: PDF(3088 KB)   HTML
摘要: 

用X射线光电子能谱(XPS)表征了心血管支架用Nb-60Ta-2Zr合金在模拟血浆溶液(r-SBF)和在人体全血中浸泡后表面反应层的性质。结果表明, 在两种介质中分别浸泡后, 材料表面氧化膜的化学成分和厚度明显不同。在r-SBF溶液中浸泡24 h后, 在合金表面形成约50 nm厚的含Ca、P沉积层, 覆盖于Nb、Ta的氧化膜之上; 相反, 在全血液中浸泡的合金表面未出现富Ca和P的沉积层, 仅形成厚度约24 nm、主要由Ta2O5和Nb2O5构成的氧化膜。因此, 尽管两种介质的离子浓度相近, 但全血中的蛋白质和血细胞等有机物对Ca、P等元素的沉积有抑制作用。

关键词 生物材料铌合金XPS模拟血浆血液表面膜    
Abstract

X-ray photoelectron spectroscopy (XPS) was used to characterize the surface films formed on Nb-60Ta-2Zr alloy with an immersion in simulated plasma solution (r-SBF) and human whole blood. Significant difference in the chemical composition and thickness of the oxide films formed on the alloy immersed in these two media was identified. After immersion in r-SBF solution for 24 h, an oxide film of mixed Nb2O5 and Ta2O5 formed on the alloy surface, while on top of which a 50 nm thick deposition film containing Ca and P could be clearly detected. In contrast, for the alloy immersed in whole blood, only a 24 nm thick oxide film of mixed Nb2O5 and Ta2O5 existed, but no deposition film containing Ca and P was detected. It was indicated that even though the ion concentration in these two media is nearly identical, the organic components in human blood such as proteins and blood cells may play a role to inhibit the deposition of Ca and P elements.

Key wordsbiomaterial    Nb alloy    XPS    simulated plasma    blood    surface film
收稿日期: 2014-05-09     
Reagent NaCl NaHCO3 Na2CO3 KCl K2HPO43H2O MgCl26H2O HEPES CaCl2 Na2SO4
Composition 5.403 0.740 2.046 0.225 0.230 0.311 11.928 0.293 0.072
表1  r-SBF溶液的化学成分
图1  Nb-60Ta-2Zr合金在空气中机械抛光和在r-SBF溶液中37℃分别浸泡1 h和24 h后表面的XPS全谱
Nb Ta Zr O Ca P S N Na Cl C dfilm
As-polished 15.6 11.7 1.2 48.5 - - - - - - 23.0 0.9
1 h in r-SBF 11.0 9.2 0.6 39.2 0.8 1.2 - - 0.3 - 37.8 2.3
24 h in r-SBF 0.1 0.05 0.01 28.1 8.6 7.2 - - 0.3 - 55.6 110
1 h in blood 0.1 0.03 0.04 16.8 0.2 0.2 0.5 14.0 0.02 0.3 67.7 16
24 h in blood 0.8 0.9 0.2 22.5 1.3 0.9 0.9 4.4 0.4 1.6 66.2 24
表2  机械抛光态、分别在r-SBF溶液和全血中浸泡1 h和24 h后Nb-60Ta-2Zr合金最外表面层元素的相对浓度(at.%)以及表面氧化膜的厚度dfilm (nm)
图2  Nb-60Ta-2Zr合金在37℃下r-SBF溶液中浸泡24 h后表面层元素(a) O, (b) Ca和(c) P的高分辨率XPS谱
图3  在r-SBF溶液中浸泡后Nb-60Ta-2Zr合金表面层内沿深度的元素含量分布图, (a) 1 h和(b) 24 h
图4  Nb-60Ta-2Zr合金在37℃下全血中孵育1 h后材料表面的SEM照片: (a) 低倍观察下的血细胞分布, 高倍下观察到的(b)红细胞和(c)血小板。图(a)中的白色箭头所指为红细胞, 黑色箭头所指为血小板
图5  Nb-60Ta-2Zr合金在37℃下人体全血中浸泡1 h和24 h后表面的XPS全谱。
图6  Nb-60Ta-2Zr合金在37℃下全血浸泡1 h后最外表面层元素的高分辨XPS谱: (a) O 1s, (b) N 1s, (c) C 1s, (d) S 2p。
图7  Nb-60Ta-2Zr合金表面层内沿深度的元素浓度分布图, 在全血中浸泡 (a) 1 h, (b) 24 h
1 T. Hanawa,Metal ion release from metal implants, Mater. Sci. Eng. C, 24(6-8), 745(2004)
2 V. Hlady, J. Buijs,Protein adsorption on solid surfaces, Curr. Opin. Biotech., 7(1), 72(1996)
3 A. Klinger, D. Steinberg, D. Kohavi, M.N. Sela,Mechanism of adsorption of human albumin to titanium in vitro, J. Biomed. Mater. Res., 36(3), 387(1997)
4 R. L. Williams, D. F. Williams,Albumin adsorption on metal surfaces, Biomaterials, 9(3), 206(1988)
5 G. C. F. Clark, D. F. Williams,The effects of proteins on metallic corrosion, J. Biomed. Mater. Res., 16(2), 125(1982)
6 S. Karimi, T. Nickchi, A.M. Alfantazi,Long-term corrosion investigation of AISI 316L, Co–28Cr–6Mo, and Ti–6Al–4V alloys in simulated body solutions, Appl. Surf. Sci., 258(16), 6087(2012)
7 S. Virtanen, I. Milosev, E. Gomez-Barrena, R. Trebse, J. Salo, Y.T. Konttinen,Special modes of corrosion under physiological and simulated physiological conditions, Acta Biomater., 4(3), 468(2008)
8 D. O. Halwani, P. G. Anderson, B. C. Brott, A. S. Anayiotos, J. E. Lemons,Clinical device-related article surface characterization of explanted endovascular stents: evidence of in vivo corrosion, J. Biomed. Mater. Res. Part B Appl. Biomater., 95(1), 225(2010)
9 T. Hanawa, S. Hiromoto, K. Asami,Characterization of the surface oxide film of a Co–Cr–Mo alloy after being located in quasi-biological environments using XPS, Appl. Surf. Sci., 183(1-2), 68(2001)
10 A. Nagai, Y. Tsutsumi, Y. Suzuki, K. Katayama, T. Hanawa, K. Yamashita,Characterization of air-formed surface oxide film on a Co–Ni–Cr–Mo alloy (MP35N) and its change in Hanks’ solution, Appl. Surf. Sci., 258(14), 5490(2012)
11 S. Hiromoto,Composition of surface oxide film of titanium with culturing murine fibroblasts L929, Biomaterials, 25(6), 979(2004)
12 R. Hang, S. Ma, V. Ji, P. K. Chu,Corrosion behavior of NiTi alloy in fetal bovine serum, Electrochim. Acta, 55(20), 5551(2010)
13 C. Schille, M. Braun, H. P. Wendel, L. Scheideler, N. Hort, H. P. Reichel, E. Schweizer, J. Geis-Gerstorfer,Corrosion of experimental magnesium alloys in blood and PBS: A gravimetric and microscopic evaluation, Materials Science and Engineering: B, 176(20), 1797(2011)
14 Y. Tanaka, K. Kurashima, H. Saito, A. Nagai, Y. Tsutsumi, H. Doi, N. Nomura, T. Hanawa,In vitro short-term platelet adhesion on various metals, J. Artif. Organs, 12(3), 182(2009)
15 S. Kanagaraja, I. Lundstr?m, H. Nygren, P. Tengvall,Platelet binding and protein adsorption to titanium and gold after short time exposure to heparinized plasma and whole blood, Biomaterials, 17(23), 2225(1996)
16 J. F. Schenck,The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds, Med. Phys., 23(6), 815(1996)
17 J. Starcukova, Z. Starcuk Jr., H. Hubalkova, I. Linetskiy,Magnetic susceptibility and electrical conductivity of metallic dental materials and their impact on MR imaging artifacts, Dent. Mater., 24(6), 715(2008)
18 F. G. Shellock, V. J. Shellock,Metallic stents: Evaluation of MR imaging safety, Am. J. Roentgenol., 173(3), 543(1999)
19 J. Hug, E. Nagel, A. Bornstedt, B. Schnackenburg, H. Oswald, E. Fleck,Coronary arterial stents: Safety and artifacts during MR imaging, Radiology, 216(3), 781(2000)
20 R. Koster, D. Vieluf, M. Kiehn, M. Sommerauer, J. Kahler, S. Baldus, T. Meinertz, C. Hamm,Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis, Lancet, 356(9245), 1895(2000)
21 E. Eisenbarth, D. Velten, M. Muller, R. Thull, J. Breme,Biocompatibility of beta-stabilizing elements of titanium alloys, Biomaterials, 25(26), 5705(2004)
22 B. O'Brien, J. Stinson, W. Carroll,Development of a new niobium-based alloy for vascular stent applications, J. Mech. Behav. Biomed. Mater., 1(4), 303(2008)
23 B. J. O'Brien, J. S. Stinson, D. A. Boismier, W. M. Carroll,Characterization of an NbTaWZr alloy designed for magnetic resonance angiography compatible stents, Biomaterials, 29(34), 4540(2008)
24 H.-Z. Li, J. Xu,MRI compatible Nb–Ta–Zr alloys used for vascular stents: Optimization for mechanical properties, J. Mech. Behav. Biomed. Mater., 32, 166(2014)
25 X.-M. Li, H.-Z. Li, S.-P. Wang, H.-M. Huang, H.-H. Huang, H.-J. Ai, J. Xu,MRI-compatible Nb-60Ta-2Zr alloy used for vascular stents: Haemocompatibility and its correlation with protein adsorption, Mater. Sci. Eng. C, 42, 385(2014)
26 N. Padilla, A. Bronson,Electrochemical characterization of albumin protein on Ti-6AL-4V alloy immersed in a simulated plasma solution, J. Biomed. Mater. Res. Part A, 81(3), 531(2007)
27 A. Oyane, H.-M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, T. Nakamura,Preparation and assessment of revised simulated body fluids, J. Biomed. Mater. Res. Part A, 65(2), 188(2003)
28 S. L. Goodman,Sheep, pig, and human platelet–material interactions with model cardiovascular biomaterials, J. Biomed. Mater. Res., 45(3), 240(1999)
29 C. M. Pradier, D. Costa, C. Rubio, C. Compere, P. Marcus,Role of salts on BSA adsorption on stainless steel in aqueous solutions. I. FT-IRRAS and XPS characterization, Surf. Interface. Anal., 34(1), 50(2002)
30 K. Cai, J. Bossert, K. D. Jandt,Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation?, Colloids Surf B Biointerfaces, 49(2), 136(2006)
31 Y. Okazaki, E. Gotoh, T. Manabe, K. Kobayashi,Comparison of metal concentrations in rat tibia tissues with various metallic implants, Biomaterials, 25(28), 5913(2004)
32 W. Bal, M. Sokolowska, E. Kurowska, P. Faller,Binding of transition metal ions to albumin: sites, affinities and rates, Biochim Biophys Acta, 1830(12), 5444(2013)
[1] 赵宁, 焦大, 朱艳坤, 刘德学, 刘增乾, 张哲峰. 天然铠甲高效防护的材料学机理[J]. 材料研究学报, 2022, 36(1): 1-7.
[2] 徐水, 张岩, 高保东, 赵诏, 成国涛, 朱勇. 再生丝素/羧甲基壳聚糖膜的制备和性能[J]. 材料研究学报, 2017, 31(8): 612-618.
[3] 张滨, 刘莉, 李天书, 李瑛, 雷鸣凯, 王福会. 纳米化对Fe-20Cr合金在[Cl-]=0.1 mol/L硼酸缓冲溶液中Cl-吸附行为的影响*[J]. 材料研究学报, 2016, 30(1): 6-9.
[4] 叶芸,颜敏,陈填源,蔡寿金,郭太良. 阳极氧化TiO2纳米管阵列的制备及场发射性能*[J]. 材料研究学报, 2013, 27(3): 252-258.
[5] 陈抒天 李 鸿 郝新彦 王广妮 樊晓霞 严永刚. 石英纤维/纳米羟基磷灰石/聚酰胺66复合生物材料的制备和性能*[J]. 材料研究学报, 2013, 27(1): 32-36.
[6] 杜汇伟 沈玲 丁虎 杨洁 赵磊 马忠权. 超薄SiO2层的化合态结构和厚度[J]. 材料研究学报, 2012, 26(5): 461-466.
[7] 张艳 田苗苗 李墨 刘蕾. 不同Cr含量的Ni基合金电化学腐蚀行为[J]. 材料研究学报, 2011, 25(6): 645-650.
[8] 叶芸 郭太良 蒋亚东 黎威智. 热极化和电晕极化铁电PVDF薄膜的成分和结构[J]. 材料研究学报, 2011, 25(4): 403-407.
[9] 国娜 李亚东. Sm3+掺杂对SmxNiCo0.2Mn1.8O4热敏陶瓷性能的影响[J]. 材料研究学报, 2011, 25(2): 209-213.
[10] 王征科 胡巧玲 李友良 戴卓君. 微波辐射增强改性三维壳聚糖棒材[J]. 材料研究学报, 2011, 25(2): 113-117.
[11] 王庆良 孙彦敏 张 磊. PECVD法制备类金刚石薄膜的摩擦学性能[J]. 材料研究学报, 2011, 25(1): 73-78.
[12] 毛丽贺 王玉林 万怡灶 何芳 黄远. 钛离子注入镁钙锌合金在SBF中的耐腐蚀性[J]. 材料研究学报, 2010, 24(4): 383-388.
[13] 刘强 程晓农 徐红星 费黄霞. 316L不锈钢和NiTi合金微磁场表面粗糙度对血液相容性的影响[J]. 材料研究学报, 2009, 23(3): 323-326.
[14] 邹俭鹏; 阮建明; 黄伯云; 周忠诚 . HA(ZrO2)/316L不锈钢纤维对称功能梯度生物材料[J]. 材料研究学报, 2005, 19(3): 262-268.
[15] 焦延鹏; 黄静雯; 李立华; 周长忍 . 生物降解型交联PVP材料的制备和性能[J]. 材料研究学报, 2004, 18(5): 511-516.