Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (4): 355-360    
  研究论文 本期目录 | 过刊浏览 |
高温型PVDF/PSSA复合膜的质子传导性能
马宁, 蔡芳昌, 殷浩, 张红星, 蒋涛
湖北大学材料科学与工程学院 武汉 430062
Proton Exchange Properties of PVDF/PSSA Composite Membranes for High Temperature
MA Ning, CAI Fangchang, YIN Hao, ZHANG Hongxing, JIANG Tao
Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062
引用本文:

马宁 蔡芳昌 殷浩 张红星 蒋涛. 高温型PVDF/PSSA复合膜的质子传导性能[J]. 材料研究学报, 2012, 26(4): 355-360.
, , , , , . Proton Exchange Properties of PVDF/PSSA Composite Membranes for High Temperature[J]. Chin J Mater Res, 2012, 26(4): 355-360.

全文: PDF(989 KB)  
摘要: 通过自由基加聚反应制备了聚偏氟乙烯(PVDF)/聚苯乙烯磺酸(PSSA)复合膜, 通过SEM、EDX、电化学阻抗谱(EIS)和TG等方法表征复合膜的微结构、电化学及尺寸稳定性和力学性能等性能与反应时间的关系。结果表明, 随着反应时间的延长,PVDF/PSSA复合膜的含水率、质子传导率逐渐增大。反应时间为8 h的复合膜, 其含水率在常温下达到4.4%, 质子传导率达到0.375 S/cm, 抗拉强度为32.1 MPa。这表明, 在采用自由基加聚反应制备的复合膜中形成了稳固的半互穿网络(SIPN)结构, 在保持一定的热稳定性能、尺寸稳定性以及力学性能的条件下, 其质子传导性能明显改善。
关键词 聚偏氟乙烯聚苯乙烯磺酸复合膜半互穿网络    
Abstract:Poly (styrenesuflonic) acid (PSSA) and poly (vinylidene fluoride) (PVDF) composite membranes have been prepared by free radical polymerization. By reading the relationship of the reaction–time and the characteristics of microstructural, electrochemistry and physical properties of PVDF/PSSA Composite Membranes by SEM, EDX, EIS and TG, it is found that both the water content of PVDF/PSSA membrane and proton conductivity did increase if the hot–pressing time was extended. When the hot–pressing reactive time approached the optimum values at 8 hour, the water content reached 4.4% at the room temperature, the proton conductivity reached the maximum (0.375 S/cm) and the resisting strength reached to 32.1 MPa, which shows that the conductivity of the SIPN composite membrane can be improved clearly while holding the better mechanical and thermo property by free radical polymerization.
Key wordsPVDF    Poly(styrenesuflonic) acid    composite membrane    SIPN
收稿日期: 2012-01-09     
ZTFLH: 

O646

 
基金资助:

国家高技术研究发展计划(863计划)2009AA034400资助项目。

1 YI Baolian, Fuel Cells–Principle Technology Application (Beijing, Chemical Industry Press, 2003) p.351

(衣宝廉,  燃料电池--原理•技术•应用  (北京, 化学工业出版社, 2003) p.351)

2 S.J.C.Cleghorn, X.Ren, T.E.Springer, M.S.Wilson, C.Zawodzinski, T.A.Zawodzinski, S.Gottesfeld, PEM Fuel Cells for Transportation and Stationary Power Generation Applications, Journal of Hydrogen Energy, 22, 1137(1997)

3 W.G.Grot, Perfluorinated ion exchange polymers and their use in research and industry, Macromol. Symp., 82(1), 161(1994)

4 MAO Zongqiang, XIE Xiaofeng, LU Tianhong, Fuel Cells (Beijing, ChemicalIndustry Press, 2005) p.2

(毛宗强, 谢晓峰, 陆天虹, 燃料电池 (北京, 化学工业出版社, 2005) p.2)

5 REN Suzhen, SUN Gongquan, WU Zhimou, LI Chennan, JIN Wei, XIN Qin, YANG xuefeng, Blend membranes of sulfonated polyether ether, ketone/polyvinylidene fluoride, Chinese Journal of Power Sources, 30(3), 200(2006)

(任素贞, 孙公权, 吴智谋, 李辰楠, 金 巍, 辛 勤, 杨学锋, 化聚醚醚酮/聚偏氟乙烯共混膜的研究, 电源技术,  30(3), 200(2006))

6 S.M.Zaidi, S.D.Mikhailenko, G.P.Robertson, Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, Journal of Membrane Science, 173(1), 17(2000)

7 ZHANG Yaoxia, ZHU Xiuling, JIAN Xigao, Preparation of sulfonated poly(phthalazinone ether ketone ketone) and properties of the composite membranes SPPEKK/BPO4, Chinese Journal of Materials Research, 23(2), 215(2009)

(张耀霞, 朱秀玲, 蹇锡高, 磺化聚芳醚酮酮的制备及磷酸硼复合膜的性能, 材料研究学报,  23(2), 215(2009))

8 Y.M.Shang, X.F.Xie, H.Jin, J.W.Guo, Y.W.Wang, S.G.Feng, S.B.Wang, J.M.Xue, Synthesis and characterization of novel sulfonated naphthalenic polyimides as proton conductive membrane for DMFC applications, European Polymer Journal, 42(11), 2987(2006)

9 L.H.Sperling, Interpenetrating polymer networks and related

materials (New York, Plenum Press, 1981) p.2

10 A.D.Jenkins, P.Kratochvfl, R.F.T.Stepto, U.W.Suter, Glossary of basic terms in polymer science, Pure and Applied Chemistry, 68(12), 2287(1996)

11 J.R.Millar, Interpenetrating polym er netw orks styrene–divinyl benzene copolymers with two and three interpenetratingnetworks and their sulphonates, Journal of the Chemical Society, 236, 1311(1960)

12 HE Chunqing, ZHANG Shaoping, WANG Shaojie,WANG Guiyou, HU Chunpu, Free volume properties of interpenetrating polymer networks probed by positron annihilation, Wuhan university journal: neo–confucianism version, 46(1), 63(2000)

(何春清, 戴益群, 张少平, 王少阶, 王贵友, 胡春圃, 穿网络聚合物的自由体积特性, 武汉大学学报: 理学版, 46(1), 63(2000))
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[3] 王兴平, 薛文斌, 王文选. Zr-2合金表面ZrO2/Cr复合膜的高温蒸汽氧化行为[J]. 材料研究学报, 2023, 37(10): 759-769.
[4] 成世杰, 王晨洋, 殷舒怡, 张宏伟, 左丹英. 表面喷涂壳聚糖溶液对聚偏氟乙烯多孔膜的结构和性能的影响[J]. 材料研究学报, 2020, 34(6): 466-472.
[5] 陈林, 黄娇, 严磊, 郭怡, 林宏, 蔺海兰, 卞军. 多尺度功能性填料PVDF基纳米复合材料的制备和性能[J]. 材料研究学报, 2020, 34(11): 835-844.
[6] 陈斌, 张佳露, 张岩, 赵海超, 朱丽静. 高通量抗污染碳量子点/聚砜纳米复合分离膜的制备[J]. 材料研究学报, 2020, 34(10): 761-769.
[7] 黄强, 郭贵宝, 安胜利, 刘金彦. TMAH改性聚偏氟乙烯一步法接枝聚PSPMA膜的制备和性能[J]. 材料研究学报, 2018, 32(9): 706-712.
[8] 徐水, 张岩, 高保东, 赵诏, 成国涛, 朱勇. 再生丝素/羧甲基壳聚糖膜的制备和性能[J]. 材料研究学报, 2017, 31(8): 612-618.
[9] 陈宁宁, 王燕华, 钟莲, 杨培培, 王佳. 石墨烯/硬脂酸超疏水复合膜层的防腐性能[J]. 材料研究学报, 2017, 31(10): 751-757.
[10] 宋贵宏,肖金泉,杜昊,陈立佳. 轴对称磁场对电弧离子镀TiN-Cu纳米复合膜性能的影响[J]. 材料研究学报, 2015, 29(10): 787-793.
[11] 由钰婷 汪 阳 张霞. 纳米TiO2共混改性PVDF复合膜的制备和性能[J]. 材料研究学报, 2012, 26(3): 247-254.
[12] 葛延峰 蒋百灵 李育磊 杨志远. 镁合金表面微弧氧化--SiO2复合膜层的微观结构和耐蚀性[J]. 材料研究学报, 2011, 25(1): 79-83.
[13] 尚伟 陈白珍 石西昌 温玉清. 镁合金微弧氧化--溶胶凝胶复合膜层的耐蚀性[J]. 材料研究学报, 2011, 25(1): 57-60.
[14] 杨巍 蒋百灵 时惠英 鲜林云. 镁合金微弧电泳复合膜层的微观结构和抗腐蚀性能[J]. 材料研究学报, 2009, 23(4): 421-425.
[15] 叶芸 郭太良 蒋亚东. 聚偏氟乙烯电极化的动力学相变和铁电性[J]. 材料研究学报, 2009, 23(2): 149-152.