Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (11): 861-869    DOI: 10.11901/1005.3093.2024.493
  研究论文 本期目录 | 过刊浏览 |
Fe-Mn-Al-C低密度高锰钢的晶粒尺寸对其低温变形的影响
扬帆1,2, 张宇琦1,2, 潘嘉文1,2, 陈俊3()
1.中国海洋石油集团有限公司液化天然气及低碳技术重点实验室 北京 100028
2.中海石油气电集团有限责任公司 北京 100028
3.东北大学 数字钢铁全国重点实验室 沈阳 110819
Effect of Grain Size on Cryogenic Deformation Behavior of a Low-density High-Mn Steel FeMnAlC
YANG Fan1,2, ZHANG Yuqi1,2, PAN Jiawen1,2, CHEN Jun3()
1.CNOOC Key Laboratory of Liquefied Natural Gas and Low-Carbon Technology, Beijing 100028, China
2.CNOOC Gas & Power Group, Beijing 100028, China
3.State Key Laboratory of Digital Steel, Northeastern University, Shenyang 110819, China
引用本文:

扬帆, 张宇琦, 潘嘉文, 陈俊. Fe-Mn-Al-C低密度高锰钢的晶粒尺寸对其低温变形的影响[J]. 材料研究学报, 2025, 39(11): 861-869.
Fan YANG, Yuqi ZHANG, Jiawen PAN, Jun CHEN. Effect of Grain Size on Cryogenic Deformation Behavior of a Low-density High-Mn Steel FeMnAlC[J]. Chinese Journal of Materials Research, 2025, 39(11): 861-869.

全文: PDF(28733 KB)   HTML
摘要: 

设计一种Fe-30Mn-9Al-0.9C低密度高锰钢,研究了晶粒尺寸对其组织和性能的影响。研究表明,这种钢的晶粒取向均呈随机分布,在-196 ℃拉伸变形后绝大部分晶粒取向倾向于<001>//拉伸方向或<111>//拉伸方向。将晶粒由(16.5 ± 11.6) μm细化到(3.4 ± 2.2) μm使其室温和-196 ℃的屈服强度均提高大约160 MPa;细晶实验钢的-196 ℃屈服强度、抗拉强度和断后延伸率分别为1304 MPa、1664 MPa和31.9%。虽然降低变形温度使层错能降低,但是这种钢中的有序结构使塑性变形依然受滑移面软化控制。这种钢的塑性变形机制以平面滑移为主,但是晶粒尺寸影响动态滑移带细化以及滑移带间的相互作用。

关键词 材料的组织、结构、缺陷与性能低温变形有序团簇平面滑移强塑性    
Abstract

A low-density high-Mn test steel Fe-30Mn-9Al-0.96Mo-0.9C-0.49Si for cryogenic application was designed, and the effect of grain sizes on the microstructure and mechanical properties of the steel was investigated by tensile test at -196 oC, in terms of the microstructure evolution. The grain orientations of this steel are randomly distributed, and after tensile deformation at -196 oC the majority of the grain orientations tends to be <001>// the tensile direction or <111>// the tensile direction. Regardless of room temperature and -196 oC, the yield strength can be increased by approximately 160 MPa by refining its grain size from (16.5 ± 11.6) μm to (3.4 ± 2.2) μm. Accordingly, the steel after grain refinement presents yield strength, tensile strength and total elongation as 1304 MPa, 1664 MPa and 31.9% at -196 oC, respectively. Although the stacking fault energy can be reduced by lowering deformation temperature, the ordered structure still makes the plastic deformation of the steel to still be controlled by softening of slip planes. Thus, the plastic deformation mechanism of the steel is still governed by the planar slip. However, the dynamic slip band refinement and interaction between the slip bands can be affected by grain size.

Key wordsmicrostructure    defect and property of material    cryogenic deformation    ordered cluster    planar glide    strength and plasticity
收稿日期: 2024-12-13     
ZTFLH:  TG142.33  
基金资助:中国海洋石油集团有限公司液化天然气及低碳技术重点实验室开放基金
通讯作者: 陈俊,副教授,chenjun@mail.neu.edu.cn,研究方向为极低温用镍系低温钢和高锰低温钢设计及强韧化机制
Corresponding author: CHEN Jun, Tel: (024)83681416, E-mail: chenjun@mail.neu.edu.cn
作者简介: 扬 帆,男,1985年生,硕士
图1  实验钢的工程应力-应变和加工硬化率曲线
图2  FG和CG实验钢的光学显微组织
图3  FG和CG实验钢的EBSD-IPF、EBSD-KAM图和δ-铁素体IPF图
图4  FG和CG实验钢的晶粒尺寸分布柱状图
图5  FG和CG实验钢在-196 ℃变形后的EBSD-IPF、EBSD-KAM和δ-铁素体IPF图
图6  FG实验钢在-196 ℃拉伸变形后的典型TEM照片
图7  CG实验钢在-196 ℃拉伸变形后的典型TEM照片
[1] Zambrano O A. A general perspective of Fe-Mn-Al-C steels [J]. J. Mater. Sci., 2018, 53(20): 14003
[2] Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
[3] Li F S, Liu Z P, Ding C C, et al. Strengthening and plastifying of a novel high-strength low-density austenitic steel [J]. Acta Metall. Sin., 2025, 61(6): 909
[3] 李夫顺, 刘志鹏, 丁灿灿 等. 一种新型高强奥氏体低密度钢的强塑性机理 [J]. 金属学报, 2025, 61(6): 909
[4] Ren P, Chen X P, Wang C Y, et al. Effects of pre-strain and two-step aging on microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low-density steel [J]. Acta Metall. Sin., 2022, 58(6): 771
[4] 任 平, 陈兴品, 王存宇 等. 预变形和双级时效对Fe-30Mn-11A1-1.2C奥氏体低密度钢显微组织和力学性能的影响 [J]. 金属学报, 2022, 58(6): 771
[5] Chen X P, Li W J, Ren P, et al. Effects of C content on microstructure and properties of Fe-Mn-Al-C low-density steels [J]. Acta Metall. Sin., 2019, 55(8): 951
[5] 陈兴品, 李文佳, 任 平 等. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响 [J]. 金属学报, 2019, 55(8): 951
[6] Sun J, Li J H, Huang Z Y, et al. Microstructure evolution and dynamic recrystallization of a low density steel during isothermal compression [J]. Chin. J. Mater. Res., 2024, 38(10): 768
[6] 孙 建, 李景辉, 黄贞益 等. 一种低密度钢等温压缩时组织的演化和动态再结晶 [J]. 材料研究学报, 2024, 38(10): 768
[7] Cui Z Q, Zhang N F, Wang J, et al. High temperature compression deformation behavior of 9Mn27Al10Ni3Si low density steel [J]. Chin. J. Mater. Res., 2022, 36(12): 907
[7] 崔志强, 张宁飞, 王 婕 等. 9Mn27Al10Ni3Si低密度钢的高温压缩变形行为及其机制 [J]. 材料研究学报, 2022, 36(12): 907
[8] Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518: 77
[9] Wang F, Song M, Elkot M N, et al. Shearing brittle intermetallics enhances cryogenic strength and ductility of steels [J]. Science, 2024, 384: 1017
[10] Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels [J]. Steel Res. Int., 2006, 77(9-10): 627
[11] Chen J, Lu S, Hou Z Y, et al. Atomic-scale understanding of twin intersection rotation and ε-martensite transformation in a high Mn twinning-induced plasticity steel [J]. Acta Mater., 2024, 271: 119832
[12] Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel [J]. Mater. Sci. Eng., 2008, 496A: 417
[13] Park K T. Tensile deformation of low-density Fe-Mn-Al-C austenitic steels at ambient temperature [J]. Scr. Mater., 2013, 68: 375
[14] Welsch E, Ponge D, Hafez Haghighat S M, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel [J]. Acta Mater., 2016, 116: 188
[15] Chen J, Liu N, Liu Z Y, et al. Alloying design as well as strength and toughness of high Mn steels for LNG tank building [J]. China Metall., 2023, 33(6): 73
[15] 陈 俊, 刘 宁, 刘振宇 等. LNG储罐用高锰钢合金化设计及强韧性 [J]. 中国冶金, 2023, 33(6): 73
[16] Pierce D T, Jiménez J A, Bentley J, et al. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation [J]. Acta Mater., 2015, 100: 178
[17] Li Y Q, Zhu L C, Liu Y, et al. On the strain hardening and texture evolution in high manganese steels: experiments and numerical investigation [J]. J. Mech. Phys. Solids, 2013, 61: 2588
[18] Chen X M, Lin Y C, Wu F. EBSD study of grain growth behavior and annealing twin evolution after full recrystallization in a nickel-based superalloy [J]. J. Alloy. Compd., 2017, 724: 198
[19] Zhi H H, Zhang C, Antonov S, et al. Investigations of dislocation-type evolution and strain hardening during mechanical twinning in Fe-22Mn-0.6C twinning-induced plasticity steel [J]. Acta Mater., 2020, 195: 371
[20] Lee J, Sohn S S, Hong S, et al. Effects of Mn addition on tensile and Charpy impact properties in austenitic Fe-Mn-C-Al-based steels for cryogenic applications [J]. Metall. Mater. Trans., 2014, 45A: 5419
[1] 侯晓英, 孙卫华, 金光宇, 王业勤, 郝亮, 曹光明, 任东, 殷继丽. 1 GPaTRIPBF钢的组织调控和强塑性机制[J]. 材料研究学报, 2020, 34(10): 793-800.
[2] 赵金华, 王学强, 康健, 袁国, 邸洪双. 超快冷工艺下X80管线钢的DWTT裂纹扩展行为[J]. 材料研究学报, 2017, 31(10): 728-736.
[3] 姚大平;张匀;胡壮麒;李依依. Al—Li合金的晶界断裂[J]. 材料研究学报, 1991, 5(2): 143-146.