|
|
|
| Fe-Mn-Al-C低密度高锰钢的晶粒尺寸对其低温变形的影响 |
扬帆1,2, 张宇琦1,2, 潘嘉文1,2, 陈俊3( ) |
1.中国海洋石油集团有限公司液化天然气及低碳技术重点实验室 北京 100028 2.中海石油气电集团有限责任公司 北京 100028 3.东北大学 数字钢铁全国重点实验室 沈阳 110819 |
|
| Effect of Grain Size on Cryogenic Deformation Behavior of a Low-density High-Mn Steel FeMnAlC |
YANG Fan1,2, ZHANG Yuqi1,2, PAN Jiawen1,2, CHEN Jun3( ) |
1.CNOOC Key Laboratory of Liquefied Natural Gas and Low-Carbon Technology, Beijing 100028, China 2.CNOOC Gas & Power Group, Beijing 100028, China 3.State Key Laboratory of Digital Steel, Northeastern University, Shenyang 110819, China |
引用本文:
扬帆, 张宇琦, 潘嘉文, 陈俊. Fe-Mn-Al-C低密度高锰钢的晶粒尺寸对其低温变形的影响[J]. 材料研究学报, 2025, 39(11): 861-869.
Fan YANG,
Yuqi ZHANG,
Jiawen PAN,
Jun CHEN.
Effect of Grain Size on Cryogenic Deformation Behavior of a Low-density High-Mn Steel FeMnAlC[J]. Chinese Journal of Materials Research, 2025, 39(11): 861-869.
| [1] |
Zambrano O A. A general perspective of Fe-Mn-Al-C steels [J]. J. Mater. Sci., 2018, 53(20): 14003
|
| [2] |
Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
|
| [3] |
Li F S, Liu Z P, Ding C C, et al. Strengthening and plastifying of a novel high-strength low-density austenitic steel [J]. Acta Metall. Sin., 2025, 61(6): 909
|
| [3] |
李夫顺, 刘志鹏, 丁灿灿 等. 一种新型高强奥氏体低密度钢的强塑性机理 [J]. 金属学报, 2025, 61(6): 909
|
| [4] |
Ren P, Chen X P, Wang C Y, et al. Effects of pre-strain and two-step aging on microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low-density steel [J]. Acta Metall. Sin., 2022, 58(6): 771
|
| [4] |
任 平, 陈兴品, 王存宇 等. 预变形和双级时效对Fe-30Mn-11A1-1.2C奥氏体低密度钢显微组织和力学性能的影响 [J]. 金属学报, 2022, 58(6): 771
|
| [5] |
Chen X P, Li W J, Ren P, et al. Effects of C content on microstructure and properties of Fe-Mn-Al-C low-density steels [J]. Acta Metall. Sin., 2019, 55(8): 951
|
| [5] |
陈兴品, 李文佳, 任 平 等. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响 [J]. 金属学报, 2019, 55(8): 951
|
| [6] |
Sun J, Li J H, Huang Z Y, et al. Microstructure evolution and dynamic recrystallization of a low density steel during isothermal compression [J]. Chin. J. Mater. Res., 2024, 38(10): 768
|
| [6] |
孙 建, 李景辉, 黄贞益 等. 一种低密度钢等温压缩时组织的演化和动态再结晶 [J]. 材料研究学报, 2024, 38(10): 768
|
| [7] |
Cui Z Q, Zhang N F, Wang J, et al. High temperature compression deformation behavior of 9Mn27Al10Ni3Si low density steel [J]. Chin. J. Mater. Res., 2022, 36(12): 907
|
| [7] |
崔志强, 张宁飞, 王 婕 等. 9Mn27Al10Ni3Si低密度钢的高温压缩变形行为及其机制 [J]. 材料研究学报, 2022, 36(12): 907
|
| [8] |
Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518: 77
|
| [9] |
Wang F, Song M, Elkot M N, et al. Shearing brittle intermetallics enhances cryogenic strength and ductility of steels [J]. Science, 2024, 384: 1017
|
| [10] |
Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels [J]. Steel Res. Int., 2006, 77(9-10): 627
|
| [11] |
Chen J, Lu S, Hou Z Y, et al. Atomic-scale understanding of twin intersection rotation and ε-martensite transformation in a high Mn twinning-induced plasticity steel [J]. Acta Mater., 2024, 271: 119832
|
| [12] |
Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel [J]. Mater. Sci. Eng., 2008, 496A: 417
|
| [13] |
Park K T. Tensile deformation of low-density Fe-Mn-Al-C austenitic steels at ambient temperature [J]. Scr. Mater., 2013, 68: 375
|
| [14] |
Welsch E, Ponge D, Hafez Haghighat S M, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel [J]. Acta Mater., 2016, 116: 188
|
| [15] |
Chen J, Liu N, Liu Z Y, et al. Alloying design as well as strength and toughness of high Mn steels for LNG tank building [J]. China Metall., 2023, 33(6): 73
|
| [15] |
陈 俊, 刘 宁, 刘振宇 等. LNG储罐用高锰钢合金化设计及强韧性 [J]. 中国冶金, 2023, 33(6): 73
|
| [16] |
Pierce D T, Jiménez J A, Bentley J, et al. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation [J]. Acta Mater., 2015, 100: 178
|
| [17] |
Li Y Q, Zhu L C, Liu Y, et al. On the strain hardening and texture evolution in high manganese steels: experiments and numerical investigation [J]. J. Mech. Phys. Solids, 2013, 61: 2588
|
| [18] |
Chen X M, Lin Y C, Wu F. EBSD study of grain growth behavior and annealing twin evolution after full recrystallization in a nickel-based superalloy [J]. J. Alloy. Compd., 2017, 724: 198
|
| [19] |
Zhi H H, Zhang C, Antonov S, et al. Investigations of dislocation-type evolution and strain hardening during mechanical twinning in Fe-22Mn-0.6C twinning-induced plasticity steel [J]. Acta Mater., 2020, 195: 371
|
| [20] |
Lee J, Sohn S S, Hong S, et al. Effects of Mn addition on tensile and Charpy impact properties in austenitic Fe-Mn-C-Al-based steels for cryogenic applications [J]. Metall. Mater. Trans., 2014, 45A: 5419
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|