Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (7): 535-544    DOI: 10.11901/1005.3093.2019.557
  研究论文 本期目录 | 过刊浏览 |
高熵合金FeCoNiTi的微观组织演变和强韧化行为
刘怡1, 徐康1, 涂坚1,2(), 黄灿1, 吴玮1, 谭力1, 张琰斌1, 尹瑞森3, 周志明1,2
1.重庆理工大学材料科学与工程学院 重庆 400054
2.重庆理工大学 重庆市模具技术重点实验室 重庆 400054
3.重庆大学航天航空学院 重庆 400044
Microstructure Evolution and Strength-ductility Behavior of FeCoNiTi High-entropy Alloy
LIU Yi1, XU Kang1, TU Jian1,2(), HUANG Can1, WU Wei1, TAN Li1, ZHANG Yanbin1, YIN Ruisen3, ZHOU Zhiming1,2
1.School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
2.Chongqing Municipal Key Laboratory of Institutions of Higher Education for Mould Technology, Chongqing University of Technology, Chongqing 400054, China
3.School of Aerospace Engineering, Chongqing University, Chongqing 400030, China
引用本文:

刘怡, 徐康, 涂坚, 黄灿, 吴玮, 谭力, 张琰斌, 尹瑞森, 周志明. 高熵合金FeCoNiTi的微观组织演变和强韧化行为[J]. 材料研究学报, 2020, 34(7): 535-544.
Yi LIU, Kang XU, Jian TU, Can HUANG, Wei WU, Li TAN, Yanbin ZHANG, Ruisen YIN, Zhiming ZHOU. Microstructure Evolution and Strength-ductility Behavior of FeCoNiTi High-entropy Alloy[J]. Chinese Journal of Materials Research, 2020, 34(7): 535-544.

全文: PDF(24234 KB)   HTML
摘要: 

使用热力学软件设计了一种新型双相高熵合金(FeCoNiTi),利用真空电弧熔炼和热处理制备出FeCoNiTi高熵合金块体材料。表征结果表明,FeCoNiTi高熵合金由层状结构的Laves相和魏氏体板条FCC相组成。在室温下FeCoNiTi高熵合金具有良好的综合力学性能(抗压强度σb=2.08 GPa,压缩应变ε=20.3%)。高强度来自“硬”Laves相(层状结构)的强化,而“软”FCC相(魏氏体板条)中的位错滑移和变形孪晶提供塑性。

关键词 金属材料高熵合金强韧化双相组织魏氏体板条    
Abstract

A new type of dual-phase high-entropy alloy (FeCoNiTi) was designed by means of thermodynamic software and then block material of FeCoNiTi high-entropy alloy was prepared via vacuum arc smelting and then heat treatment. Characterization results demonstrate that the as-homogenized FeCoNiTi alloy presents dual-phase microstructure composed of the lamellar structure (hexagonal close packed (Laves) phase) and the Widmanstätten laths (face-centered cubic (FCC) phase). The FeCoNiTi alloy shows excellent comprehensive property at room temperature with compressive strength σb=2.08 GPa and compression strain ε=20.3%. The high strength can mainly be attributed to the hard Laves phase (lamellar structure) strengthening; while dislocation slip and deformation twin in the soft FCC phase (Widmanstätten laths) provide the ductility.

Key wordsmetallic materials    high entropy alloy    strength-ductility    dual-phase    widmanstätten laths
收稿日期: 2019-12-02     
ZTFLH:  TG113.1  
基金资助:重庆市基础与前沿研究计划(2017jcyjAX0381);重庆市教委科技研究项目(KJQN201801139);国家博士面上资助(2018M632250)
作者简介: 刘怡,女,1996年生,硕士生
图1  FeCoNi和FeCoNiTi高熵合金的相组成随温度的变化
图2  呈枝晶结构FeCoNiTi高熵合金铸态金的相图和显示粗晶组织和魏氏体板条的均匀态组织结构金相图
图3  均匀态FeCoNiTi高熵合金的背散射衍射图
图4  背散射电子图、反极图、相图和XRD图谱
图5  两个代表性选区元素的分布
MicrostructureElements (%, atom fraction)
FeCoNiTi
Lamellar structureLocations 131.628.911.228.3
Locations 333.328.710.528.5
Widmanstätten lathsLocations 217.4127.232.4122.98
Locations 417.427.432.322.9
表1  层状结构(位置1和3)和魏氏体板条(位置2和4)的化学成分
图6  FeCoNiTi高熵合金的压缩应力-应变曲线和断口形貌
图7  形变FeCoNiTi高熵合金的不同放大倍数SEM照片
图8  FeCoNiTi高熵合金形变态的EBSD图像
ElementFeCoNiTi

Atom radius

/nm

VEC

Young's moduli

/GPa

Fe0-1-2-170.12148211
Co-00-280.12519209
Ni--0-350.124610200
Ti---00.14624116
表2  使用Miedema模型计算的二元等原子合金的混合焓、Fe,Co、Ni、Ti的原子半径以及价电子浓度以及杨氏模量
图9  FeCoNiTi高熵合金的微观组织演变
[1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299
doi: 10.1002/(ISSN)1527-2648
[2] Tsai M H, Yeh J W. High-entropy alloys: a critical review [J]. Materials Research Letters, 2014, 2(3): 107
doi: 10.1080/21663831.2014.912690
[3] Praveen S, Kim H S. High-Entropy Alloys: Potential Candidates for High-Temperature Applications-An Overview [J]. Advanced Engineering Materials, 2018, 20(1): 1
[4] Zhang W, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Science China Materials, 2018, 61(1): 2
doi: 10.1007/s40843-017-9195-8
[5] Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017: 448
[6] Cao L G, Zhu L, Zhang L L, et al. Microstructure Evolution and Mechanical Properties of Rapid Solidified AlCoCrFeNi2.1 Eutectic High Entropy Alloy [J]. Chinese Journal of Materials Research, 2019, 33(9): 650
doi: 10.11901/1005.3093.2019.069
[6] (曹雷刚, 朱琳, 张磊磊, 王辉, 崔岩, 杨越, 刘峰斌. 快速凝固AlCoCrFeNi2.1共晶高熵合金的微观组织演变和力学性能 [J]. 材料研究学报, 2019, 33(9): 650)
doi: 10.11901/1005.3093.2019.069
[7] Zhou Y J, Zhang Y, Wang Y L, et al. Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100-x high-entropy alloys [J]. Materials Science & Engineering A, 454-455(none): 260
[8] Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Materialia, 2013, 61(15): 5743
[9] Wang J, Huang W G. Microstructure and Mechanical Properties of CrMoVNbFex High-entropy Alloys [J]. Chinese Journal of Materials Research, 2016, 30(8): 609
[9] (王江, 黄维刚. CrMoVNbFex高熵合金微观组织结构与力学性能 [J]. 材料研究学报, 2016, 30(8): 609)
[10] He J Y, Wang H, Huang H, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Materialia, 2016: 187
[11] Huang H, Wu Y, He J, et al. Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering [J]. Advanced Materials, 1701678
doi: 10.1002/adma.202003530 pmid: 32697371
[12] Li Z, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534(7606): 227
doi: 10.1038/nature17981
[13] Jiang L, Jiang H, Lu Y, et al. Mechanical Properties Improvement of AlCrFeNi2Ti0.5 High Entropy Alloy through Annealing Design and its Relationship with its Particle-reinforced Microstructures [J]. Journal of Materials Science & Technology, 2015, 31(4): 397
[14] Laplanche G, Horst O, Otto F, et al. Microstructural evolution of a CoCrFeMnNi high-entropy alloy after swaging and annealing [J]. Journal of Alloys and Compounds, 2015: 548
[15] Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys [J]. Materials Science and Engineering: A, 2018: 380
[16] Wang Q, Ma Y, Jiang B, et al. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0. 7CoCrFe2Ni with prominent tensile properties [J]. Scripta Materialia, 2016: 85
[17] Á Vida, Chinh N Q, Lendvai J, et al. Microstructures and transition from brittle to ductile behavior of NiFeCrMoW High Entropy Alloys [J]. Materials Letters, 2017: 14
[18] Wu B, Chen W, Jiang Z, et al. Influence of Ti addition on microstructure and mechanical behavior of a FCC-based Fe 30 Ni 30 Co 30 Mn 10 alloy [J]. Materials Science and Engineering: A, 2016, 676:492
[19] Dinsdale A T. SGTE data for pure element [J]. Calphad, 1991, 15(4): 317
[20] Vaidya M, Guruvidyathri K, Murty B S. Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys [J]. Journal of Alloys and Compounds, 2019: 856
[21] Grewal R, Aranas Jr C, Chadha K, et al. Formation of Widmanstätten ferrite at very high temperatures in the austenite phase field [J]. Acta Materialia, 2016: 23
[22] Banerjee S, Mukhopadhyay P. Phase transformations: examples from titanium and zirconium alloys [M]. Elsevier, 2010
[23] Hu D, Huang A J, Wu X. TEM characterisation of Widmanstätten microstructures in TiAl-based alloys [J]. Intermetallics, 2005, 13(2): 211
doi: 10.1016/j.intermet.2004.08.007
[24] Feng X, Zhang J, Wu K, et al. Ultrastrong Al 0.1 CoCrFeNi high-entropy alloys at small scales: effects of stacking faults vs. nanotwins [J]. Nanoscale, 2018, 10(28): 13329
doi: 10.1039/c8nr03573c pmid: 29989622
[25] Huang S, Huang H, Li W, et al. Twinning in metastable high-entropy alloys [J]. Nature communications, 2018, 9(1-7): 2381
doi: 10.1038/s41467-018-04780-x
[26] Tu J, Liu L, Dou Y, et al. Deformation and annealing behaviors of as-cast non-equiatomic high entropy alloy [J]. Materials Science and Engineering: A, 2018: 9
[27] Miedema A R, De Chatel P F, De Boer F R. Cohesion in alloys—fundamentals of a semi-empirical model [J]. Physica B & C, 1980, 100(1): 1
[28] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta materialia, 2000, 48(1): 279
[29] Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. Journal of Applied Physics, 2011, 109(10): 103505
doi: 10.1063/1.3587228
[30] Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys [J]. Intermetallics, 2014: 131
[31] Cui P, Ma Y, Zhang L, et al. Effect of Ti on microstructures and mechanical properties of high entropy alloys based on CoFeMnNi system [J]. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 2018: 198
[32] Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects [J]. Materials Today, 2016, 19(6): 349
doi: 10.1016/j.mattod.2015.11.026
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.