Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (9): 655-661    DOI: 10.11901/1005.3093.2015.349
  研究论文 本期目录 | 过刊浏览 |
T8钢液相等离子体电解渗碳的扩散过程和光谱学分析*
吴杰1,2,张亦凡1,2,金小越1,2,杨璇1,2,琳陈1,2,薛文斌1,2
Diffusion Coefficient and Spectroscopy Analysis during Plasma Electrolytic Carburizing on T8 Carbon Steel
Jie WU1,2,Yifan ZHANG1,2,Xiaoyue JIN1,2,Xuan YANG1,2,Lin CHEN1,2,Wenbin XUE1,2,*
1. Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
2. Beijing Radiation Center, Beijing 100875, China
引用本文:

吴杰,张亦凡,金小越,杨璇,琳陈,薛文斌. T8钢液相等离子体电解渗碳的扩散过程和光谱学分析*[J]. 材料研究学报, 2016, 30(9): 655-661.
Jie WU, Yifan ZHANG, Xiaoyue JIN, Xuan YANG, Lin CHEN, Wenbin XUE. Diffusion Coefficient and Spectroscopy Analysis during Plasma Electrolytic Carburizing on T8 Carbon Steel[J]. Chinese Journal of Materials Research, 2016, 30(9): 655-661.

全文: PDF(2660 KB)   HTML
摘要: 

采用阴极液相等离子体电解渗技术实现了T8碳钢表面的快速渗碳。测量了样品内部温度与外加电压的关系, 并评估了在不同电压下碳在钢中的扩散过程和等离子体放电的光谱特征。结果表明, T8碳钢在甘油水溶液中经1min渗碳处理后可得到20-30 μm厚的硬化层。在外加电压为360 V电压、样品表面温度约为650℃的条件下, 碳的扩散系数为6.7×10-8 cm2s-1; 在外加电压为380 V、样品表面温度约800℃的条件下, 碳的扩散系数为1.5×10-7 cm2s-1。气膜放电击穿产生的等离子体处于局部热平衡状态, 电子温度为5000-12000 K。等离子体区的瞬时高温为有机物的分解和碳的快速扩散提供了有利条件, 碳的扩散系数比同温度下传统固体渗碳提高了一个数量级, 扩散激活能也明显降低。

关键词 等离子体电解渗碳扩散系数发射光谱电子温度    
Abstract

Fast carburization of T8 carbon steel was carried out by plasma electrolytic carburizing (PEC) method in glycerol aqueous solution. The dependence of temperature on the applied voltage for the steel sample was measured with a thermocouple, and the influence of the applied voltage on the diffusion process of carbon and the optical emission spectral features of the plasma discharge was investigated. It was found that a hardening layer of 20-30 μm thick formed after 1min discharge in glycerol aqueous solution; by applied voltage 360 V, the surface temperature of the steel was about 650℃and the diffusion coefficient of carbon was about 6.7×10-8 cm2s-1; while by applied voltage 380 V, the surface temperature of the steel and the diffusion coefficient of carbon were about 800℃ and1.5×10-7 cm2s-1, respectively. In addition, the discharge plasma within the gaseous envelope by the above two voltages was in local thermal equilibrium (LTE) state with temperatures in the range of 5000-12000 K. The transient high temperature promotes the decomposition of electrolyte and the diffusion of carbon. In comparison with the conventionbal pack cementation process at the same temperature, the diffusion coefficient of carbon was enhanced by an order of magnitude with an obviously reduced activation energy for the PEC process.

Key wordsplasma electrolytic carburizing    diffusion coefficient    optical emission spectroscopy    electron temperature
收稿日期: 2015-11-20     
基金资助:* 国家自然科学基金51071031和51671032, 高等学校博士学科点专项科研基金20120003110010资助项目
图1  等离子体电解渗碳的实验装置图
图2  距样品表面0.5 mm处的钢内部温度随电压的变化关系
图3  在360 V放电1 min后的样品表面和截面图
图4  在380 V放电1 min后的样品表面和截面图
图5  在不同温度等离子体电解渗碳样品截面的碳浓度分布曲线
图6  扩散方程的解析解与实验测量的碳含量分布曲线的对比图
图7  等离子体电解渗碳过程中T8钢样品内部不同位置的温度
Line λ / nm Transition gk Energy / eV Aki / 107S-1
Fe II 516.7 3d6(5D2)4f→3d6(5D)4d 8 2.4 2.82
Fe II 697.6 3d6(5D)5d→3d6(5D)5p 4 1.8 1.92
表1  两条Fe II谱线的波长, 跃迁方式, 上能级的统计权重, 激发能和跃迁概率
图8  T8钢表面等离子体电解渗碳的光发射总谱
图9  等离子体放电区的电子浓度随放电时间的变化
图10  等离子体放电区的电子温度随放电时间的变化
[1] LI Zhensheng, YANG Ming'an, Modern Surface Engineering Techniques (Beijing, China Machine Press, 2007)p. 252
[1] (郦振声, 杨明安, 现代表面工程技术(北京, 机械工业出版社, 2007)p.252)
[2] I. Jauhari, S. Rozali, N. Masdek, O. Hiroyuki, Surface properties and activation energy analysis for superplastic carburizing of duplex stainless steel, Materials Science and Engineering A, 466, 230(2007)
[3] X. Y. Li, N. Habibi, T. Bell, H. Dong, Microstructural characterisation of a plasma carburised low carbon Co-Cr alloy, Surface Engineering, 23(1), 45(2007)
[4] XUE Wenbin, JIN Qian, LIU Run, JIN Xiaoyue, DU Jiancheng, Plasma electrolytic carburizing process on stainless steel in glycerin aqueous solution, Transactions of Materials and Heat Treatment, 33(5), 108(2012)
[4] (薛文斌, 金乾, 刘润, 金小越, 杜建成, 甘油体系中不锈钢表面液相等离子体电解渗碳工艺, 材料热处理学报, 33(5), 108(2012))
[5] D. Shen, Y. Wang, P. Nash, G. Xing, A novel method of surface modification for steel by plasma electrolysis carbonitriding, Materials Science and Engineering A, 458, 240(2007)
[6] B. Wang, W. Xue, J. Wu, X. Jin, M. Hua, Z. Wu.Characterization of surface hardened layers on Q235 low-carbon steel treated by plasma electrolytic borocarburizing, Journal of Alloys and Compounds, 578, 162(2013)
[7] J. Wu, W. Xue, B. Wang, X. Jin, J. Du, Y. Li, Characterization of carburized layer on T8 steel fabricated by cathodic plasma electrolysis, Surface & Coating Technology, 245, 9(2014)
[8] F. ?avu?lu, M. Usta, Kinetics and mechanical study of plasma electrolytic carburizing for pure iron, Applied Surface Science, 257, 4014(2011)
[9] H. Pang, G. Lv, H. Chen, X. Wang, G. Zhang, S. Yang, Microstructure and corrosion performance of carbonitriding layers on cast iron by plasma electrolytic carbonitriding, Chinese Physics Letters, 26(8), 086805(2009)
[10] B. Wang, W. Xue, Z. Wu, X. Jin, J. Wu, J. Du, Influence of discharge time on properties of plasma electrolytic borocarburized layers on Q235 low-carbon steel, Materials Chemistry and Physics, 168, 10(2015)
[11] YU Yongning, Fundamentals of Materials Science (Beijing, Higher Education Press, 2006)p. 465
[11] (余永宁, 材料科学基础(北京, 高等教育出版社, 2006)p.465)
[12] H. Jiménez, M.H. Staia, E.S. Puchi, Mathematical modeling of a carburizing process of a SAE 8620H steel, Surface & Coating Technology, 120-121, 358(1999)
[13] R. O. Hussein, X. Nie, D. O. Northwood, A spectroscopic and microstructural study of oxide coatings produced on a Ti-6Al-4V alloy by plasma electrolytic oxidation, Materials Chemistry and Physics, 134, 484(2012)
[14] R. Liu, B. Wang, J. Wu, W. Xue, X. Jin, J. Du, M. Hua, Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel, Applied Surface Science, 321, 348(2014)
[15]
[16] H. R. Griem, Validity of local thermal equilibrium in plasma spectroscopy, Physical Review, 131(3), 1170(1963)
[17] H. R. Griem, Plasma Spectroscopy, McGraw-Hill Book Company, Inc., New York, 1964: 297
[18] M. D. Klapkiv, H. M. Nykyforchyn, V. M. Posuvailo, Spectral analysis of an electrolytic plasma in the process of synthesis of aluminum oxide, Materials Science, 30(3), 333(1994)
[1] 李宁宁, 陈旸, 陈希, 殷利迎, 陈光. 包埋渗铝法制备Fe-Al渗层及其扩散机制[J]. 材料研究学报, 2021, 35(8): 572-582.
[2] 马涛,李慧蓉,高建新,李运刚. 铜在碳钢中扩散及其对碳钢耐腐蚀性的影响[J]. 材料研究学报, 2019, 33(3): 225-231.
[3] 卢锦花 杨晓辉 李贺军 高伟 张守阳. 压--压疲劳加载对2D--C/C复合材料导热性能的影响[J]. 材料研究学报, 2012, 26(4): 425-430.
[4] 徐捷;朱信华;孟中岩. PNN/PZT系梯度功能压电陶瓷离子互扩散动力学[J]. 材料研究学报, 1997, 11(3): 297-301.
[5] 张中太;王庆明;张孝文. YBa_2Cu_3O_(7-x)陶瓷氧扩散动力学[J]. 材料研究学报, 1995, 9(2): 153-157.
[6] 姚大平;陈文绣. 电化学渗透法研究氢陷阱捕集现象及几个实验问题讨论[J]. 材料研究学报, 1989, 3(1): 47-53.