Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (1): 44-50    DOI: 10.11901/1005.3093.2013.683
  本期目录 | 过刊浏览 |
钒钛铁精矿碳热还原制备铁基摩擦材料的热力学分析*
邓伟林1,冯可芹1(),张光明1,2,李莹1,张雨1
1. 四川大学制造科学与工程学院 成都 610065
2. 四川工程职业技术学院 德阳 618000
Thermodynamics of Ferro-based Friction Material by in-situ Carbothermic Reduction Form Vanadium and Titanium Iron Concentrate
Weilin DENG1,Keqin FENG1,**(),Guangming ZHANG1,2,Ying LI1,Yu ZHANG1
1. School of Manufacture Sci. and Eng., Sichuan Univ., Chengdu 610065
2. Sichuan Eng. Technical College, Deyang 618000
引用本文:

邓伟林,冯可芹,张光明,李莹,张雨. 钒钛铁精矿碳热还原制备铁基摩擦材料的热力学分析*[J]. 材料研究学报, 2014, 28(1): 44-50.
Weilin DENG, Keqin FENG, Guangming ZHANG, Ying LI, Yu ZHANG. Thermodynamics of Ferro-based Friction Material by in-situ Carbothermic Reduction Form Vanadium and Titanium Iron Concentrate[J]. Chinese Journal of Materials Research, 2014, 28(1): 44-50.

全文: PDF(2384 KB)   HTML
摘要: 

利用钒钛铁精矿中的铁和钛元素, 以钒钛铁精矿、石墨为主要原料, 按铁基摩擦材料的成分添加其他组份, 采用原位合成技术, 实现合成与烧结一体化, 制备铁基摩擦材料。对钒钛铁精矿还原过程中的热力学进行计算和分析, 利用TG–DSC检测方法对还原过程中的质量变化进行分析。结果表明: 当温度高于979 K时, 钒钛铁精矿中Fe氧化物和Ti氧化物相继发生还原反应, 其还原过程为: 首先Fe3O4被还原, 其次是钛磁铁矿和钛铁矿发生反应生成Fe和Ti的氧化物, 最后是Ti的各阶氧化物反应生成TiC。本实验根据分析结果, 制定了合理的工艺路线, 获得了组织致密, 结合优良的铁基摩擦材料。

关键词 钒钛铁精矿铁基摩擦材料原位合成热力学    
Abstract

Ferro-based friction material was fabricated by reaction sintering technology, using Fe and Ti elements containing in vanadium and titanium iron concentrate as main raw materials, adding other ingredient on the basic of composition of ferro-based friction material, synthesis and sintering were accomplished unanimously in vacuum resistance furnace. Thermodynamic of the reduction of vanadium and titanium iron concentrate was calculated and studied, and the mass change of the reduction was studied by TG–DSC. The results show that the reduction temperature of Fe and Ti oxides is above 979 K, in the reduction process of vanadium and titanium iron concentrate, Fe3O4 is reduced by carbon firstly, and then titanomagnetite and ilmenite are reduced into Fe and Ti oxides, and finally different valent titanium oxides are reduced into TiC.Good interface bonding and compact structure have been got in experimental research by making reasonable process route.

Key wordsvanadium and titanium iron concentrate    ferro-based friction material    in-situ    thermodynamics
收稿日期: 2013-09-18     
基金资助:* 四川省科技支撑计划2012GZX0089 和攀枝花市级应用技术研究与开发资金计划2012CY-C-1 资助项目。
Component TFe TiO2 Al2O3 SiO2 MgO CaO V2O5 S P
Mass fraction /% 53.17 12.65 4.69 3.89 3.91 1.57 0.56 0.677 0.005
表1  钒钛铁精矿化学成分
图1  钒钛铁精矿的XRD谱
Equation No. Δ G r 0 =f (T)/Jmol-1
Fe3O4+C=3FeO+CO (2) 196828-201.05T
Fe3O4+4C=3Fe+4CO (3) 650716-659.955T
FeO+C=Fe+CO (4) 151592-152.969T
Fe2TiO4 +C=Fe+FeTiO3+CO (5) 189664-144.892T
2FeTiO3 +C=Fe+FeTi2O5+CO (6) 222397-207.267T
3/5FeTi2O5 +C=3/5Fe+2/5Ti3O5+CO (7) 294903-307.832T
表2  Fe氧化物碳热还原反应及其基本热力学数据
图2  C还原铁氧化物的Δ G r 0 图
Equation No. Δ G r 0 =f (T)/Jmol-1
FeTiO3+C=Fe+TiO2+CO (8) 265414-294.251T
FeTiO3+4/3C=Fe+1/3Ti3O5+4/3CO (9) 356559-360.161T
FeTiO3+3/2C=1/2Ti2O3+Fe+3/2CO (10) 396877-384.571T
FeTiO3+2C=TiO+Fe+2CO (11) 553091-469.119T
FeTiO3+3C=Ti+Fe+3CO (12) 966634-649.183T
FeTiO3+4C=Fe+TiC+3CO (13) 791198-636.523T
表3  FeTiO3碳热还原反应及其基本热力学数据
图3  C还原FeTiO3的Δ G r 0 图
Equation No. Δ G r 0 =f (T)/Jmol-1
TiO2+1/3C=1/3Ti3O5+1/3CO (14) 91219.4-65.91T
TiO2+1/2C=1/2Ti2O3+1/2CO (15) 131658-90.32T
TiO2+C=TiO+CO (16) 291311-174.868T
TiO2+2C=Ti+2CO (17) 721099-354.932T
TiO2+3C=TiC+2CO (18) 533176-342.272T
Ti3O5+1/2C=3/2Ti2O3+1/2CO (19) 120598-73.23T
Ti3O5+2C=3TiO+2CO (20) 601345-326.875T
Ti3O5+8C=3TiC+5CO (21) 1326022-829.085T
Ti2O3+C=2TiO+CO (22) 320875-169.097T
表4  Ti的氧化物碳热还原反应及其基本热力学数据
图4  C还原Ti氧化物的Δ G r 0 图
Equation No. Δ G r 0 =f (T)/Jmol-1
CaO+C=Ca+CO (23) 524543-196.037T
MgO+C=Mg+CO (24) 491704-199.907T
Al2O3+3C=2Al+3CO (25) 1345398-586.372T
SiO2+2C=Si+2CO (26) 687474-352.845T
表5  其余氧化物碳热还原反应及其基本热力学数据
图5  碳还原各氧化物反应自由能变化Δ G r 0 图
图6  钒钛铁精矿-碳体系的DSC-TG曲线
图7  烧结产物XRD谱
图8  烧结产物显微组织
图9  烧结产物白亮区域的SEM和EDS图
图10  烧结产物黑暗区域的SEM和EDS图
图11  烧结试样的SEM像
图12  颗粒状结构的SEM和EDS图
1 YAO Pingping,ZHANG Zhongyi, WANG Lin, XIONG Xiang, HE Jun, LI Hongmei, Effect of sintering temperature on frictional wear behavior of iron-based powder metallurgy aircraft brake materials, Lubrication Engineering, 32(6), 1(2007)
1 (姚萍屏, 张忠义, 汪 琳, 熊 翔, 何 俊, 李红梅, 烧结温度对铁基粉末冶金航空刹车材料摩擦磨损性能的影响, 润滑与密封, 32(6), 1(2007))
2 YAO Pingping,XIONG Xiang, HUANG Baiyun, Present situation and development powder metallurgy airplane brake materials, Powder Metallurgical Industry, 10(6), 34(2000)
2 (姚萍屏, 熊 翔, 黄伯云, 粉末冶金航空刹车材料的应用现状与发展, 粉末冶金工业, 10(6), 34(2000))
3 R. A. Miller,Thermal barrier coating for aircraft engines history and directions, Thermal Spray Tech, 6(1), 35(1997)
4 WANG Guangda,FANG Yucheng, LUO Xiyu, Application of P/M friction materials in breaking of high speed train, Powder Metallurgy Industry, 17(4), 38(2007)
4 (王广达, 方玉诚, 罗锡裕, 粉末冶金摩擦材料在高速列车制动中的应用, 粉末冶金工业, 17(4), 38(2007))
5 ZHAO Yu,CHEN Li, JIANG Yongchun, Powder metallurgy sintered iorn-base materials wear-ability, Ferro Alloys, 186, 24(2006)
5 (赵 宇, 陈 莉, 姜永春, 粉末冶金烧结铁基材料的耐磨性, 铁合金, 186, 24(2006))
6 Yuming Wang,Zhangfu Yuan, Reductive kinetics of the reaction between a natural ilmenite and carbon, International Journal of Mineral Processing, 81, 133(2006)
7 Z. Mei, Y. W. Yan, K. Cui,Effect of matrix composition on the microstructure of in situ synthesized TiC particulate reinforced iron-based composites, Materials Letters, 57, 3175(2003)
8 ZOU Zhengguang,CHEN Hanyuan, MAI Liqiang, Thermodynamics process and synthesis conditions research on TiC/Fe composite by in-situ carbothermic reduction method, Journal of Inorganic Materials, 16(5), 903(2001)
8 (邹正光, 陈寒元, 麦立强, 钦铁矿原位碳热还原合成TiC/Fe的热力学过程及合成条件研究, 无机材料学报, 16(5), 903(2001))
9 WU Yi,ZOU Zhengguang, YIN Chuanqiang, LI Xiaomin, ZHOU Lang, Thermodynamics on steel bonded cemented carbide GT35 by in-situ carbothermic reduction from ilmenite, Journal of Materials Engineering, 1, 12(2006)
9 (吴 一, 邹正光, 尹传强, 李晓敏, 周 浪, 钛铁矿碳热反应原位合成GT35钢结硬质合金的热力学分析, 材料工程, 1, 12(2006))
10 N. J. Welham, P.E. Willis,Formation of TiN/TiC-Fe composites from ilmenite (FeTiO3)concentrate, Metallurgical and Materials Transactions B, 29B, 1077(1998)
11 WANG Yunhua,PENG Jinhui, YANG Bo, HUANG Mengyang, Study of process of producing reduced iron powder by vanadium—titanium—iron concentrates and improvement ways, Metal Mine, 1, 94(2006)
11 (汪云华, 彭金辉, 杨 卜, 黄孟阳, 钒钛铁精矿制取还原铁粉工艺及改进途径探讨, 金属矿山, 1, 94(2006))
12 LIU Songli,BAI Chenguang, HU Tu, LV Xuewei, QIU Guibao, Quick and direct reduction process of vanadium and titanium iron concentrate with carbon-containing pellets at high temperature, Journal of Chongqing University, 34(1), 60(2011)
12 (刘松利, 白晨光, 胡 途, 吕学伟, 邱贵宝, 钒钛铁精矿内配碳球团高温快速直接还原历程, 重庆大学学报, 34(1), 60(2011))
13 N. S. Srinivasan, A. K. Lahiri,Study on the reduction of hematite by carbon, Metransactions B, 8(1), 175(1977)
14 YANG Jia,Thermodynamic calculation and experimental investigation on the reduction of ilmenite, Master Degree, College of Materials Science and Engineering of Chongqing University (2003)
14 (杨 佳, 钛铁矿还原过程的热力学计算及相关实验研究, 硕士论文, 重庆大学材料科学与工程学院(2003))
15 C. H. Li, W. H. Xiong, L. X. Yu,Evolution of Ti(C, N)-based cermet microstructures, Transactions of Nonferrous Metals Society of China, 12(2), 214(2002)
[1] 徐阳, 李彦睿, 刘宝胜, 刘雯, 张少华, 卫英慧. 无取向硅钢中第二相的析出行为[J]. 材料研究学报, 2023, 37(1): 47-54.
[2] 胡满银, 欧阳德来, 崔霞, 杜海明, 徐勇. 微波烧结原位合成TiC增强钛复合材料的性能[J]. 材料研究学报, 2021, 35(4): 277-283.
[3] 张瑾, 王宁, 赵冲, 李佳星, 张天驰. 可植入式医疗设备电池材料钒酸银的合成和性能[J]. 材料研究学报, 2018, 32(7): 555-560.
[4] 张来启,段立辉,林均品. 原位合成MoSi2-SiC复合材料700℃的氧化行为[J]. 材料研究学报, 2015, 29(8): 561-568.
[5] 于鸿垚 董建新 谢锡善. 18Cr10NiNb耐热钢析出相的热力学计算和平衡相分析[J]. 材料研究学报, 2010, 24(5): 449-454.
[6] 安逸 熊克 顾娜. 离子聚合物金属复合材料的力电耦合模型[J]. 材料研究学报, 2009, 23(4): 387-394.
[7] 丁义超; 王一三; 王静; 倪亚辉 . V8C7增强铁基复合材料的制备和性能[J]. 材料研究学报, 2008, 22(3): 317-321.
[8] 甄强; 丁伟中; 李文超 . O’-Sialon-BN复合材料在钢液中的侵蚀机理[J]. 材料研究学报, 2001, 15(5): 572-576.
[9] 郭广思; 隋智通 . Ca-La2O3-Ni体系的热力学研究[J]. 材料研究学报, 2001, 15(3): 338-342.
[10] 郭广思; 黄振奇; 隋智通; 刘亮; 周玉林 . Dy--O--Ca--Fe体系的热力学研究[J]. 材料研究学报, 2000, 14(5): 509-512.
[11] 万永中;张剑云;刘志杰;张卫;王季陶. 碳—氢—氯体系金刚石薄膜生长条件预测[J]. 材料研究学报, 1998, 12(6): 604-609.
[12] 蒋敏;李俊涛;郝士明. Ti-Al-Nb系α/β相平衡的热力学计算[J]. 材料研究学报, 1998, 12(5): 477-481.
[13] 杨伯瑄;陈建敏. 电化学原位合成制备硬脂酸锌基自润滑阳极氧化铝[J]. 材料研究学报, 1998, 12(1): 69-74.
[14] 郭海;黄勇. 原位合成纤维块体陶瓷的制备与性能[J]. 材料研究学报, 1997, 11(4): 369-374.
[15] 蒋青;赵明;吕晓霞. Zr_(65)Al_(7.5)Ni_(10)Cu_(15)Co_(2.5)合金的玻璃转变温度[J]. 材料研究学报, 1997, 11(2): 187-190.