Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (1): 61-70    DOI: 10.11901/1005.3093.2023.158
ARTICLES Current Issue | Archive | Adv Search |
Synergistic Effect of Carbon Nanotubes with Zinc Oxide Nanowires for Enhanced Electromagnetic Shielding Performance of Hybrid Carbon Fiber/Epoxy Composites
MA Yuan1,2, WANG Han1, NI Zhongqiang1,2, ZHANG Jiangang1,2, ZHANG Ruonan1,2, SUN Xinyang1,2, LI Chusen1(), LIU Chang1,2, ZENG You1,2()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

MA Yuan, WANG Han, NI Zhongqiang, ZHANG Jiangang, ZHANG Ruonan, SUN Xinyang, LI Chusen, LIU Chang, ZENG You. Synergistic Effect of Carbon Nanotubes with Zinc Oxide Nanowires for Enhanced Electromagnetic Shielding Performance of Hybrid Carbon Fiber/Epoxy Composites. Chinese Journal of Materials Research, 2024, 38(1): 61-70.

Download:  HTML  PDF(8388KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Developing advanced composites with high electromagnetic shielding effectiveness is of great significance to ensure safety and reliability of electronic devices in complex electromagnetic environments. We proposed a novel strategy to fabricate carbon fiber-based hybrid composites by in-situ growing zinc oxide (ZnO) nanowires onto carbon fiber (CF) and subsequently depositing carbon nanotubes (CNT), and infiltrating epoxy (EP) into laminated layers through vacuum-assisted resin transfer molding technique. Microstructures, electrical conductivity, and electromagnetic shielding performance of the acquired CNT-ZnO-CF/EP hybrid composites were investigated in detail. The hybrid composites of 2 mm thickness exhibited excellent electromagnetic shielding performance, and their total electromagnetic shielding effectiveness was up to 50 dB in the 8.2~12.4 GHz band, increasing by 51.52% in comparison to the CF/EP composites. Such high performance is mainly attributed to the high dielectric loss of ZnO nanowires, high electrical conductivity of continuous CNT films, and multiple reflection/absorption losses between laminated structures and multi-component interfaces. This work paves a way for development of advanced composites with high-efficiency electromagnetic shielding and structure/function integration.

Key words:  composites      electromagnetic shielding performance      laminated hybrid structures      zinc oxide nanowires      carbon nanotubes     
Received:  06 March 2023     
ZTFLH:  TB332  
Fund: National Natural Science Foundation of China(52130209);National Natural Science Foundation of China(51802317);Liaoning Natural Science Foundation(22-KF-12-04);Opening Foundation of Shanxi Key Laboratory of Nano & Functional Composite Materials(NFCM202102);IMR Innovation Fund(2022-PY07);Shenyang National Laboratory for Materials Science(2022-FP35);Shenyang Science and Technology Project(22-316-1-04)
Corresponding Authors:  ZENG You, Tel: (024)83978090, E-mail: yzeng@imr.ac.cn;
LI Chusen, Tel: (024)83978019, E-mail: csli@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.158     OR     https://www.cjmr.org/EN/Y2024/V38/I1/61

SampleCNT / %ZnO / %CF / %EP / %Density / g·cm-3
CF/EP--50.050.01.356
ZnO-CF/EP-1.550.647.91.363
CNT-ZnO-CF/EP0.21.452.046.41.368
Table 1  Component contents and density of composites
Fig.1  Schematic diagram for fabrication of CNT-ZnO-CF/EP laminated hybrid composites
Fig.2  Schematic diagram for fabrication of ZnO-CF (a), SEM images of CF (b), PDA-CF (c), ZnO seed-CF (d), and ZnO-CF (e), FTIR spectra (f), Raman spectra (g), XRD patterns (h), and TGA curves of the modified CF (i)
Fig.3  Schematic diagram for preparation of CNT-ZnO-CF through FCCVD method (a), Optical images of CNT-ZnO-CF (b), SEM image (c) and Raman spectrum of CNT deposited onto ZnO-CF (d)
Fig.4  Optical images of CF/EP (a), ZnO-CF/EP (b), and CNT-ZnO-CF/EP composites (c) and SEM images of fracture surfaces of CF/EP (d), ZnO-CF/EP (e), and CNT-ZnO-CF/EP composites (f)
Fig.5  Surface electrical conductivity of CF, ZnO-CF and CNT-ZnO-CF (a) and Volume electrical conductivity of laminated hybrid composites along in-plane and out-of-plane directions (b)
Fig.6  Total electromagnetic shielding effectiveness of laminated hybrid composites (a), reflection and absorption effectiveness (b), reflection and absorption coefficients (c) and real part (d), imaginary part (e), and loss angle tangent of dielectric constant for composites (f) and mechanism on electromagnetic shielding of laminated hybrid composites (g)
1 Mikinka E, Siwak M.Recent advances in electromagnetic interference shielding properties of carbon-fibre-reinforced polymer composites—a topical review [J]. J. Mater. Sci. Mater. Electron., 2021, 32(20): 24585
doi: 10.1007/s10854-021-06900-8
2 Wang W Y, Liu Y M, Jin X, et al. Effect of polypyrrole modified carbon fiber on interfacial property of composite PPy-carbon fiber/epoxy [J]. Chin. J. Mater. Res., 2018, 32(3): 209
doi: 10.11901/1005.3093.2017.422
王闻宇, 刘亚敏, 金 欣 等.聚吡咯修饰碳纤维/环氧树脂复合材料的界面剪切强度 [J]. 材料研究学报, 2018, 32(3): 209
doi: 10.11901/1005.3093.2017.422
3 Wang Y, Zhang H Q, Liang Y. The preparation and performance study of carbon fiber/epoxy resin composites based on electromagnetic shielding properties strengthen [J]. Mater. Sci., 2018, 8(4): 367
doi: 10.1007/BF00730463
王 勇, 张会青, 梁 祎 等.基于电磁屏蔽性能强化的碳纤维/环氧树脂复合材料的制备及性能研究 [J]. 材料科学, 2018, 8(4): 367
4 Zhu H X, Fu K K, Yang B, et al. Nickel-coated nylon sandwich film for combination of lightning strike protection and electromagnetic interference shielding of CFRP composite [J]. Compos. Sci. Technol., 2021, 207: 108675
doi: 10.1016/j.compscitech.2021.108675
5 Chen Y, Zhang D J, Li J, et al. Preparation and performance evaluation of carbon fiber/epoxy composites modified with graphene prepregs [J]. J. Mater. Eng., 2020, 48(10): 82
doi: 10.11868/j.issn.1001-4381.2019.000848
陈 宇, 张代军, 李 军 等.石墨烯改性碳纤维树脂基复合材料的制备和性能评价 [J]. 材料工程, 2020, 48(10): 82
6 Wang X, He Y L, Tang J, et al. Mechanical and electromagnetic shielding properties of Al particle sandwich CFRP composites [J]. J. Mater. Eng., 2023, 51(1): 140
doi: 10.11868/j.issn.1001-4381.2022.000450
王 宪, 贺雍律, 唐 俊 等.Al颗粒夹层CFRP复合材料力学及电磁屏蔽性能 [J]. 材料工程, 2023, 51(1): 140
7 Merizgui T, Prakash V R A, Gaoui B, et al. Microwave shielding performance of TiO2/Co/GF containing high structure carbon fiber alternate laminate composite [J]. J. Mater. Sci. Mater. Electron., 2022, 33(2): 934
doi: 10.1007/s10854-021-07365-5
8 Parameswarreddy G, Vinayakumar A, Subramanian V, et al. Investigation on electromagnetic shielding and mechanical properties of zirconia graded carbon fiber/epoxy nanocomposite [J]. Polym. Compos., 2022, 43(12): 8795
doi: 10.1002/pc.v43.12
9 Ahmad H S, Hussain T, Nawab Y, et al. Effect of dielectric and magnetic nanofillers on electromagnetic interference shielding effectiveness of carbon/epoxy composites [J]. J. Compos. Mater., 2022, 56(1): 69
doi: 10.1177/00219983211052615
10 Babu M, Bapu B R T, Muruganantham P, et al. Role of cashew shell biochar on EMI shielding behaviour of carbon fibre-epoxy nanocomposites in E, F, I and J band-microwave frequencies [J]. Biomass Convers. Biorefin., 2023, 13(1): 375
doi: 10.1007/s13399-022-02617-8
11 Zhang C, Ling Y Q, Zhang X Q, et al. Ultra-thin carbon fiber reinforced carbon nanotubes modified epoxy composites with superior mechanical and electrical properties for the aerospace field [J]. Compos. Part A-Appl. Sci. Manuf., 2022, 163: 107197
doi: 10.1016/j.compositesa.2022.107197
12 Rohini R, Verma K, Bose S.Interfacial architecture constructed using functionalized MWNT resulting in enhanced EMI shielding in epoxy/carbon fiber composites [J]. ACS Omega, 2018, 3(4): 3974
doi: 10.1021/acsomega.8b00218 pmid: 31458635
13 Liu Y, Wang F Q, Liu P, et al. Carbon nanotube carbon fiber composites study on the performance of EMC [J]. Mater. Sci., 2018, 8(6): 650
刘 艳, 王富强, 刘 鹏 等.基于碳纳米管-碳纤维复合材料电磁兼容性能的研究 [J]. 材料科学, 2018, 8(6): 650
14 Li Q Z, Sun Y H, Li G, et al. Enhancing interfacial and electromagnetic interference shielding properties of carbon fiber composites via the hierarchical assembly of the MWNT/MOF interphase [J]. Langmuir, 2022, 38(46): 14277
doi: 10.1021/acs.langmuir.2c02344 pmid: 36351284
15 Rohini R, Bose S.Extraordinary improvement in mechanical properties and absorption-driven microwave shielding through epoxy-grafted graphene "interconnects" [J]. ACS Omega, 2018, 3(3): 3200
doi: 10.1021/acsomega.7b01997 pmid: 31458577
16 Chen W, Wang J, Zhang B, et al. Enhanced electromagnetic interference shielding properties of carbon fiber veil/Fe3O4 nanoparticles/epoxy multiscale composites [J]. Mater. Res. Express, 2017, 4(12): 126303
doi: 10.1088/2053-1591/aa9af9
17 Jang D, Choi B H, Yoon H N, et al. Improved electromagnetic wave shielding capability of carbonyl iron powder-embedded lightweight CFRP composites [J]. Compos. Struct., 2022, 286: 115326
doi: 10.1016/j.compstruct.2022.115326
18 Duan N, Shi Z, Wang J, et al. Multilayer-structured carbon fiber fabric/graphene oxide/Fe3O4/epoxy composite for highly efficient mechanical and electromagnetic interference shielding [J]. Appl. Surf. Sci., 2023, 613: 156038
doi: 10.1016/j.apsusc.2022.156038
19 Abbasi H, Antunes M, Velasco J I.Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding [J]. Prog. Mater. Sci., 2019, 103: 319
doi: 10.1016/j.pmatsci.2019.02.003
20 Wu G, Chen Y, Zhan H, et al. Ultrathin and flexible carbon nanotube/polymer composite films with excellent mechanical strength and electromagnetic interference shielding [J]. Carbon, 2020, 158: 472
doi: 10.1016/j.carbon.2019.11.014
21 Chen Y, Zhang H B, Yang Y, et al. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding [J]. Adv. Funct. Mater., 2016, 26(3): 447
doi: 10.1002/adfm.v26.3
22 Han L Y, Li K Z, Fu Y Q, et al. Multifunctional electromagnetic interference shielding 3D reduced graphene oxide/vertical edge-rich graphene/epoxy nanocomposites with remarkable thermal management performance [J]. Compos. Sci. Technol., 2022, 222: 109407
doi: 10.1016/j.compscitech.2022.109407
23 Jia Z X, Zhang M F, Liu B, et al. Graphene foams for electromagnetic interference shielding: A review [J]. ACS Appl. Nano Mater., 2020, 3(7): 6140
doi: 10.1021/acsanm.0c00835
24 Singh B P, Choudhary V, Saini P, et al. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding [J]. AIP Adv., 2012, 2(2): 2151
25 Qiu B W, Zhang X Q, Xia S, et al. Magnetic graphene oxide/carbon fiber composites with improved interfacial properties and electromagnetic interference shielding performance [J]. Compos. Part A-Appl. Sci. Manuf., 2022, 155: 106811
doi: 10.1016/j.compositesa.2022.106811
26 Rohini R, Bose S.Electrodeposited carbon fiber and epoxy based sandwich architectures suppress electromagnetic radiation by absorption [J]. Compos. Part B-Eng., 2019, 161: 578
doi: 10.1016/j.compositesb.2018.12.123
27 Song C Q, Yin X W, Han M K, et al. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties [J]. Carbon, 2017, 116: 50
doi: 10.1016/j.carbon.2017.01.077
28 Song C, Yin X, Han M, et al. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties [J]. Carbon, 2017, 116: 50
doi: 10.1016/j.carbon.2017.01.077
29 Wang L, Li X, Li Q Q, et al. Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth [J]. Small, 2019, 15(18): 1900900
doi: 10.1002/smll.v15.18
30 Jiao Z, Huyan W, Yao J, et al. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling [J]. J. Mater. Sci. Technol., 2022, 113: 166
doi: 10.1016/j.jmst.2021.09.024
31 Jiang S, Hou P X, Liu C, et al. High-performance single-wall carbon nanotube transparent conductive films [J]. J. Mater. Sci. Technol., 2019, 35(11): 2447
doi: 10.1016/j.jmst.2019.07.011
32 Xu H, Tong X, Zhang Y Y, et al. Mechanical and electrical properties of laminated composites containing continuous carbon nanotube film interleaves [J]. Compos. Sci. Technol., 2016, 127: 113
doi: 10.1016/j.compscitech.2016.02.032
33 Wu Y, Wang Z Y, Liu X, et al. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding [J]. ACS Appl. Mater. Interfaces, 2017, 9(10): 9059
doi: 10.1021/acsami.7b01017
34 Lin B Y, Ehlert G, Sodano H A.Increased interface strength in carbon fiber composites through a ZnO nanowire interphase [J]. Adv. Funct. Mater., 2009, 19(16): 2654
doi: 10.1002/adfm.v19:16
35 Zheng N, Huang Y D, Sun W F, et al. In-situ pull-off of ZnO nanowire from carbon fiber and improvement of interlaminar toughness of hierarchical ZnO nanowire/carbon fiber hydrid composite laminates [J]. Carbon, 2016, 110: 69
doi: 10.1016/j.carbon.2016.09.002
36 Li J H, Sun J, Li S M, et al. Electromagnetic characteristics of different shape ZnO composite [J]. J. B. Univ. Aeronaut Astronaut, 2004, 30(9): 822
刘建华, 孙 杰, 李松梅 等.不同形貌氧化锌的微波电磁性能研究 [J]. 北京航空航天大学学报, 2004, 30(9): 822
37 Cheng L. Research on solution growth for preparation and electromagnetic wave absorption performance of needle stick-ZnO [J]. China Ceramics, 2019, 55(11): 46
程 磊.溶液生长法制备多针状氧化锌及其吸波性能的研究 [J]. 中国陶瓷, 2019, 55(11): 46
38 Luo D, Fei J, Zhang C, et al. Optimization of mechanical and tribological properties of carbon fabric/resin composites via controlling ZnO nanorods morphology [J]. Ceram. Int., 2018, 44(13): 15393
doi: 10.1016/j.ceramint.2018.05.191
39 Fei J, Luo D, Huang J F, et al. Growth of aligned ZnO nanorods on carbon fabric and its composite for superior mechanical and tribological performance [J]. Surf. Coat. Technol., 2018, 344: 433
doi: 10.1016/j.surfcoat.2018.03.056
40 Lian Q S, Xu W J, Chen H F, et al. Dual synergistic effect of a carbon/metal hybrid network on the mechanical and electromagnetic interference shielding performance in self-assembly enhanced epoxy curing networks [J]. J. Mater. Chem. C, 2021, 9(29): 9282
doi: 10.1039/D1TC01246K
41 Kim B J, Cha S H, Kong K, et al. Synergistic interfacial reinforcement of carbon fiber/polyamide 6 composites using carbon-nanotube-modified silane coating on ZnO-nanorod-grown carbon fiber [J]. Compos. Sci. Technol., 2018, 165: 362
doi: 10.1016/j.compscitech.2018.07.015
42 Wu B, Qian G, Yan Y, et al. Design of interconnected carbon fiber thermal management composites with effective EMI shielding activity [J]. ACS Appl. Mater. Interfaces, 2022, 14(43): 49082
doi: 10.1021/acsami.2c13433
43 Shi J F, Kong W W, Zou K K, et al. Enhanced mechanical and electromagnetic interference shielding performance of carbon fiber/epoxy composite with intercalation of modified aramid fiber [J]. Colloids Surf. A, 2023, 661: 130959
doi: 10.1016/j.colsurfa.2023.130959
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] DONG Zhexuan, CHEN Ping, LIU Xingda. Effect of Plasma Treatment on Interfacial Properties of CF/PI Composites at Elevated Temperatures[J]. 材料研究学报, 2023, 37(12): 900-906.
[7] XU Wenyu, SUN Jiawen, ZHU Yaofeng. Preparation and Performance of Self-assembled Carbon/Epoxy Composite Microwave Absorbing Coating[J]. 材料研究学报, 2023, 37(12): 952-960.
[8] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[9] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[10] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[11] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[12] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[13] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[14] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[15] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
No Suggested Reading articles found!