Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (2): 154-158    DOI:
论文 Current Issue | Archive | Adv Search |
AgPbSbTe Thermoelectric Materials Fabricated by Mechanical Alloying and Spark Plasma Sintering (SPS)
ZHOU Min1; LI Laifeng1; LI Jingfeng2
1.the Key Laboratory of Cryogenics; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190
2. State Key Laboratory of New Ceramics and Fine Processing; Department of Materials Science and Engineering; Tsinghua University; Beijing 100084
Cite this article: 

ZHOU Min LI Laifeng LI Jingfeng. AgPbSbTe Thermoelectric Materials Fabricated by Mechanical Alloying and Spark Plasma Sintering (SPS). Chin J Mater Res, 2010, 24(2): 154-158.

Download:  PDF(836KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High performance AgPbSbTe thermoelectric materials were fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). The effect of preparation technique on the thermoelectric properties was studied. The results showed that the phase composition and thermoelectric properties are related to the mechanical alloying. Appropriate SPS technique could decrease crystal growing, increase phonon scattering and reduce thermal conductivity. A maximum power factor of 18 μW/K2cm and a minimum thermal conductivity of 1.1 W/m K were obtained. A maximum ZT value of 1.2 was obtained at 700 K for the sample fabricated by MA (350 rpm for 4 hrs) and SPS (sintering at 673 K for 5 minute).

Key words:  inorganic non–metallic materials       thermoelectric materials       mechanical alloying       spark plasma sintering     
Received:  15 December 2009     
Fund: 

Supported by National Basic Research Program of China No.2007CB607500, National Natural Science Foundation of China (Nos.50802101, 50325207 and 50820145203).

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I2/154

1 R.Venkatasubramanian, E.Siivola, V.Colpitts, B.O'Quinn, Thin–film thermoelectric devices with high room–temperature figures of merit, Nature, 413(6856), 597(2001)
2 M.Zhou, C.D.Feng, L.D.Chen, X.Y.Huang, Effects of partial substitution of Co by Ni on the thermoelectric properties of TiCoSb–based half–Heusler compounds, Journal of Alloy Compd., 194, 391(2005)
3 M.Zhou, L.D.Chen, C.D.Feng, X.Y.Huang, Synthesis and electrical transport properties of TiCo1−xPdxSb half– Heusler compounds, Key Eng. Mater., 283, 405 (2005)
4 L.D.Hicks, T.C.Harman, X.S.Sun, Dresselhaus M S, Experimental study of the effect of quantum–well structures on the thermoelectric figure of merit, Phys. Rev. B: Condens. Matter Mater. Phys., 53, R10493(1996)
5 X.J.Zheng, L.L.Zhu, Y.H.Zhou, Q.J.Zhang, Impact of grain sizes on phonon thermal conductivity of bulk thermoelectric materials, Appl. Phys. Lett., 87(24), 242101(2005)
6 D.M.Rowe, CRC Handbook of Thermoelectrics, (New York: CRC press, 1995) p.257
7 B.C.Sales, D.Mandrus, R.K.Williams, Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials, Science, 272, 1325(1996)
8 B.C.Sales, B.C.Chakoumakos, D.Mandrus, R.K.Williams, J. Solid State Chem., 146(2), 528(1999)
9 YU Boling, QI Qiong, TANG Xinfeng, ZHANG Qingjie, Effect of grain size on thermoelectric properties of CoSb3 compound, Acta Physica Sinica, 54(12), 5763(2005)
(余柏林, 祁 琼, 唐新峰, 张清杰, 晶粒尺寸对CoSb3化合物热电性能的影响, 物理学报,  54(12), 5763(2005))
10 T.C.Harman, P.J.Taylor, M.P.Walsh, B.E.Laforge, Quantum Dot Superlattice Thermoelectric Materials and Devices, Science, 297, 2229(2002)
11 T.C.Harman, D.L.Spears, M.J.Manfra, High thermoelectric figures of merit in PbTe quantum wells, J Electron Mater., 25(7), 1121(1996)
12 H.Beyer, J.Nurnus, H.Bottner, A.Lambrecht, T.Roch, G.Bauer, PbTe based superlattice structures with high thermoelectric efficiency, Appl. Phys. Lett., 80(7), 1216(2002)
13 T.C.Harman, M.P.Walsh, B.E.Laforge, G.W.Turne, Nanostructured thermoelectric materials, J Electron Mater., 34(5), 680(2005)
14 K.F.Hsu, S.Loo, F.Guo, W.Chen, J.S.Dyck, C.Uher, T.Hogan, E.K.Polychroniadis, M.G.Kanatzidis, Cubic AgPbmSbTem+2: bulk thermoelectric materials with high figure of merit, Science, 303, 818(2004)
15 ZHOU Min, LI Jinfeng, WANG Heng, Fabrication and property of high-performance Ag–Pb–Sb–Te system semiconduction thermoelectric materials, Chinese Science Bulletin, 52(1),114 (2007)
(周 敏, 李敬锋, 王 衡, 高性能Ag--Pb--Sb--Te体系半导体热电材料的制备与性能, 科学通报,  52(1), 114(2007))
16 M Zhou, J F Li, T Kita, Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance, J. Am. Chem. Soc., 130(13), 4527(2008)

[1] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[2] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[3] LI Guipeng, SONG Guihong, HU Fang, DU Hao, YIN Lisong. Structure and Thermoelectric Properties of Ag-doped SnSe Thin Films Deposited by Magnetron Sputtering[J]. 材料研究学报, 2020, 34(8): 561-568.
[4] Nan GAO, Yan LONG, Haiyan PENG, Weihua ZHANG, Liang PENG. Microstructure and Mechanical Properties of TiVNbTa Refractory High-Entropy Alloy Prepared by Powder Metallurgy[J]. 材料研究学报, 2019, 33(8): 572-578.
[5] Zhenyu CHENG,Jianqing DAI,Haofei LIU,Zhixiang WANG,Ya LI,Ruihao ZHANG. The Influences of Co-precipitation Time on the Preparation of BiFeO3 Powders and Properties of BiFeO3 Ceramics[J]. 材料研究学报, 2017, 31(6): 451-457.
[6] Xiantun HUANG, Peilin QING, Weihe SHI. Influence of Boron, Single-layer Graphene and Multi-layer Graphene on Hydrogen Storage Property of Mg-Al Alloy[J]. 材料研究学报, 2017, 31(12): 931-938.
[7] LI Xiaolong, ZHAO Ming, ZHUANG Daming, GONG Qianming, CAO Mingjie, OUYANG Liangqi, GUO Li, SUN Rujun, GAO Zedong. Reaction Mechanism of Cu(In, Ga)Se2 Formation During Milling Process of Powder Mixture of Cu2Se, In2Se3 and Ga2Se3[J]. 材料研究学报, 2016, 30(1): 1-5.
[8] WANG Huihua,SUN Shuchen, WANG Deyong, ZHU Xiaoping, TU Ganfeng. Fabrication of TiB2-TiC Multiphase Ceramics via High Energy Ball Milling and Subsequent Pressureless Sintering[J]. 材料研究学报, 2013, 27(5): 489-494.
[9] ZHANG Jingxian HONG Qiuhong SUN Xuetong ZHANG Xinping. Preparation and Properties of Porous TiO2/HA/TiO2 Composite Coating[J]. 材料研究学报, 2012, 26(6): 572-576.
[10] ZHANG Wenjie CHEN Jinlei WANG Hong HE Hongbo. Effects of Calcination Temperature on the Photocatalytic Activity of In–TiO2 Nano–material[J]. 材料研究学报, 2012, 26(6): 561-566.
[11] FANG Yihang, YANG Qinghua, LI Hongwei, WANG Huanping, MA Hongping, XU Shiqing. Low Temperature Sintering and Performance of CBS/Al2O3 Glass–Ceramic Doped With Li2CO3[J]. 材料研究学报, 2012, 26(5): 515-520.
[12] LIN Xiaoyan YANG Weihua YANG Wutao WANG Meiqing. Preparation and Characterization of Ti-Supported PbO2 Electrode Doped with Rare Earth Er[J]. 材料研究学报, 2012, 26(4): 367-371.
[13] GAO Jiacheng WU Shufang YANG Xiaodong CHANG Xin. Effect of Pre–oxidation Powders on Sintering Properties of Uranium Dioxide Pellets[J]. 材料研究学报, 2012, 26(3): 279-283.
[14] LIU Jia NI Wen YU Miao. Preparation of High–strength Concrete by Using Fly Ash and Iron Ore Tailings as Major Raw Materials[J]. 材料研究学报, 2012, 26(3): 295-301.
[15] WEI Xiaoqing NI Xingyuan SHEN Jun ZU Guoqing ZHANG Zhihua DU Ai. Synthesis of Thermal Insulation Material Alumina Aerogels and Thermal Properties[J]. 材料研究学报, 2012, 26(3): 261-266.
No Suggested Reading articles found!