Please wait a minute...
Chin J Mater Res  2008, Vol. 22 Issue (4): 353-356    DOI:
Research Articles Current Issue | Archive | Adv Search |
Surface properties Characterization of Melamine Polyphosphate by Inverse Gas Chromatography
;
东北林业大学
Cite this article: 

;. Surface properties Characterization of Melamine Polyphosphate by Inverse Gas Chromatography. Chin J Mater Res, 2008, 22(4): 353-356.

Download:  PDF(827KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The surface properties of zinc modified melamine polyphosphate (Zn-MPP) and melamine polyphosphate (MPP) were analyzed by inverse gas chromatography (IGC) in this work.. Four n–alkanes (C6, C7, C8, and C9) were chosen as apolar probes to characterize the dispersive component of surface free energy. Trichloromethane (CHCl3), acetone, ether and tetrahydrofuran (THF) were chosen as polar probes to detect the Lewis acid–base parameters. It was found the dispersive component of free energy of zinc modified melamine polyphosphate (Zn-MPP) was 63.3, 61.9, 61.1, and 59.0 mJ/m2 at 100, 110, 120, and 130℃, respectively. And the dispersive component of free energy of melamine polyphosphate (MPP) was 52.9, 53.9, 55.8, and 56.5 mJ/m2 at 100, 110, 120, and 130℃, respectively. The Lewis acidic number Ka of the Zn-MPP was 0.44, and the basic number Kb was 1.02. And the Lewis acidic number Ka of the MPP was 0.24, and the basic number Kb was 0.96. The result means the Zn-MPP and MPP was a weak Lewis basic material. The Lewis acidic number Ka of the Zn-MPP is higher than the MPP. The ratio of Lewis acid–base numbers (Kb /Ka) of Zn-MPP is smaller than MPP.
Key words:  melamine polyphosphate      Acid–base properties      Surface free energy      IGC      
Received:  30 October 2007     
ZTFLH:  O643  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2008/V22/I4/353

1 M.Koelsch,S.Cassaignon,J.F.Guillemoles,J.P.Jolivet, Comparision of optical and electrochemical properties of anatase and brookite TiO_2 synthesized by the sol-gel method,Thin Solid Films,403,312(2002)
2 S.Andrzej,D.Lukasz,Photocatalytic destruction of cate- chol on illuminated titanic,Reaction Kinetics and Catal- ysis Letters,82,213(2004)
3 M.Zlamal,J.M.Macak,P.Schmuki,J.Kr(?)sa,Electrochem- ically assisted photocatalysis on self-organized TiO_2 nan- otubes,Electrochemistry Communications,9,2822(2007)
4 GAO Lian,ZHEN Shah,ZHANG Qinghong,Photocat- alytic property and application of nanoscale TiO_2 Mate- rials(Beijing,Chemical Industry Press,2002)p.12 (高濂,郑珊,张青红,纳米氧化铁光催化材料及应用(北京,化学工业出版社,2002)p.12)
5 I.Alessandri,E.Comini,E.Bontempi,G.Faglia, L.E.Depero,G.Sberveglieri,Cr-inserted TiO_2 thin films for chemical gas sensors,Sensors and Actuators B: Chemical,128,31(2007)
6 A.I.kokorin,V.M.Arakelyan,V.M.Arutyunian,Spectro- scopic study of polycrystalline TiO_2 doped with vana- dium,Russian Chemical Bulletin:International Edition, 52,93(2003)
7 Y.B.Xie,C.W.Yuan,Visable light induced photocatal- ysis of ceriumion modified titania sol and nanocrystal- lites,Journal of Materials Science and Technology,20(1), 14(2004)
8 HOU Guiqin,LI Zhongqiu,ZHANG Wenli,Progress in nanometer-sized zinc ferrite preparation,China Ceramic Industry,13(1),44(2006) (侯桂芹,李中秋,张文丽,纳米铁酸锌制备方法研究进展,中国陶瓷工业,13(1),44(2006))
9 LIU Hui,WEI Yu,ZHANG Yanfeng,JIA Zhenbin,Prepa- ration of nanometer-sized ferrite,Journal of Inorganic Ma- terials,17(1),56(2002) (刘辉,魏雨,张艳峰,贾振斌,纳米铁酸盐的制备研究,无机材料学报,17(1),56(2002))
10 M.A.Valenzuela,P.Bosch,J.J.Becerrill,O.Quiroz, A.I.Páez,Preparation,characterization and photocat- alytic activity of ZnO,Fe_2O_3 and ZnFe_2O_4,Journal of Photochemistry and Photobiology A,148,177(2002)
11 K.J.Xu,Preparation and characterization of nano- ZnFe_2O_4/TiO_2 films,Journal of Natural Gas Chem- istry,1(18),100(2007)
12 YUAN Zhihao,SUN Yongchang,WANG Yuhong,Effect of ZnFe_2O_4 dopant on structural phase transformation and photocatalytic activity of TiO_2 nanopowders,Chem- ical Journal of Chinese University,10(24),1875(2004) (袁志好,孙永昌,王玉红,铁酸锌掺杂对二氧化钛结构相变及光催化性能的影响,高等学校化学学报,10(24),1875(2004))
13 SHAO Zhongbao,CHEN Yanfang,LUAN Wanqiang, CHEN Xuebing,Preparation and photocatalytic charac- teristics of nanometer-sized TiO_2 by the polyacrylamide gel method,Chinese Journal of Materials Research,19(2), 213(2005) (邵忠宝,陈艳芳,栾万强,陈雪冰,纳米二氧化钛的制备及其光催化活性,材料研究学报,19(2),213(2005))
14 ZHENG Guangtao,SHI Jianwei,CHEN Mingxia,YUAN Jian,SHANGGUAN Wenfeng,Transformation and photo- catalytic activities of nano-sized TiO_2 doped by transition metal ions,Journal of Chemical Industry and Engineering, 57(3),564(2006) (郑广涛,施建伟,陈铭夏,袁坚,上官文峰过渡金属离子掺杂纳米TiO_2的相变与光催化活性,化工学报,57(3),564(2006))
15 WANG Jun,PAN Zhijun,ZHANG Chaohong,ZHANG Xiangdong,WEN Fuyu,SUN Wei,ZHANG Hanyu,Tran- sition crystal nanometer TiO_2 preparation and sonocat- alytic activity,Chinese Journal of Inorganic Chemistry, 21(10),1566(2005) 王君,潘志军,张朝红,张向东,温福宇,孙伟,张邯玉,转晶纳米TiO_2的制备及其声催化活性的研究,无机化学学报,21(10),1566(2005)
[1] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[2] JING Qian, CAO Han, LIU Fangyuan, XI Huijuan, LI Chaoxiang, SHAO Yunhang, CAO Meiwen, XIA Yongqing, WANG Shengjie. Preparation and Photocatalytic Property of Iron-doped Titanium Dioxide Nanomaterials[J]. 材料研究学报, 2022, 36(11): 862-870.
[3] LI Yuanyuan, ZENG Hanlu, PU Hongzheng, JIANG Mingzhu, WANG Zhongming, YANG Yimeng, GONG Xiangnan. Photocatalytic Degradation of Tetracycline by Si Doped Li2SnO3[J]. 材料研究学报, 2022, 36(3): 206-212.
[4] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[5] CHENG Ting, DONG Pengyu, GAO Xin, MENG Chengqi, WANG Yan, CHEN Xiaowei, ZHANG Beibei, XI Xinguo. Synthesis and Visible-light-driven Photocatalytic Activity of CsTi2NbO7@N-doped TiO2 Hybrid Core-shell Structure[J]. 材料研究学报, 2021, 35(3): 221-230.
[6] XUE Wenxing, XIE Liyan, WANG Wanjun, LIU Minghua, HUANG Jianhui. Preparation and Photocatalytic Properties of Composite Photocatalyst β-Bi2O3/BiOCOOH with Hierarchical Structure[J]. 材料研究学报, 2020, 34(4): 311-320.
[7] QIN Yanli,YANG Yan,ZHAO Pengyu,LIU Zhenyu,NI Dingrui. Microstructures and Photocatalytic Properties of BiOCl-RGO Nanocomposites Prepared by Two-step Hydrothermal Method[J]. 材料研究学报, 2020, 34(2): 92-100.
[8] Zishang CHEN,Xiaoping LIANG,Xiaowei FAN,Jun WANG,Anding HUANG,Zhifeng LIU. Fabrication and Photocatalytic Properties of Ce-La-Ag Co-doped TiO2/Basalt Fiber Composite Photocatalyst[J]. 材料研究学报, 2019, 33(7): 515-522.
[9] Shunsheng CHEN,Shaozhen LI,Xiaojing LUO,Guohong WANG. Preparation and Photocatalytic Properties of Direct Z-Scheme Hexagonal/Cubic ZnIn2S4 Composite Catalysts[J]. 材料研究学报, 2019, 33(2): 145-154.
[10] Rimin CONG, Huaiqing YU, Yunjun LUO, Jiao LI, Weiwei WANG, Qiuhong LI, Wuzhu SUN, Weimeng SI. Layer-by-Layer Construction and Photocatalytic Properties of Fe3O4/PAMAM/ZnO/TiO2 Core-shell Nanoparticles[J]. 材料研究学报, 2018, 32(10): 759-766.
[11] Zhumei WANG, Xiaoling ZHU, Yueming LI, Runhua LIAO, Zongyang SHEN, Jianlin ZUO. Effect of B and Ru Co-modification on Structure and Photocatalytic Activity of TiO2 Nanotubes[J]. 材料研究学报, 2018, 32(9): 655-661.
[12] CUI Zhankui** MI Liwei FA Wenjun ZHENG Zhi ZENG Dawen. Preparation and Photocatalytic Performance of Pt/BiOCl Nanostructures[J]. 材料研究学报, 2013, 27(6): 583-588.
[13] CHEN Jingling CAO Xiaoxin CHEN Yilin** GAO Bifen LIN Bizhou. Preparation and Properties of N-doped and Oxygen-deficient TiO2 Photocatalyst[J]. 材料研究学报, 2013, 27(4): 404-410.
[14] MIAO Guashuai MA Xingping WANG Bei ZHANG Huarong. Preparation and Photocatalytic Properties of Fe–I–codoped TiO2 Nanocrystalline[J]. 材料研究学报, 2012, 26(6): 661-666.
[15] ZHANG Wenjie CHEN Jinlei WANG Hong HE Hongbo. Effects of Calcination Temperature on the Photocatalytic Activity of In–TiO2 Nano–material[J]. 材料研究学报, 2012, 26(6): 561-566.
No Suggested Reading articles found!