Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (12): 902-910    DOI: 10.11901/1005.3093.2023.590
ARTICLES Current Issue | Archive | Adv Search |
Corrosion Behavior of Austenitic Stainless Steel S31655 in a Simulated Wet Process Phosphoric Acid Solution
ZHANG Jianbin1,2(), TIAN Huan1,2, OUYANG Minghui3, HAO Ting4
1 State Key Laboratory of Advanced Processing and Reuse of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 Wenzhou Pump and Valve Research Institute of Lanzhou University of Technology, Wenzhou 325000, China
3 Zhejiang Xuanda Group Corrosion Resistant Special Metal Materials Research Institute, Wenzhou 325000, China
4 School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
Cite this article: 

ZHANG Jianbin, TIAN Huan, OUYANG Minghui, HAO Ting. Corrosion Behavior of Austenitic Stainless Steel S31655 in a Simulated Wet Process Phosphoric Acid Solution. Chinese Journal of Materials Research, 2024, 38(12): 902-910.

Download:  HTML  PDF(6656KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of austenitic stainless steel S31655 in a simulated industrial wet process phosphoric acid solution at 25oC, 40oC, 60oC and 80oC was investigated by means of electrochemical test and XPS technique. The results show that: with the increasing temperature, the corrosion resistance of S31655 decreases and the is a critical point at 60oC, while the corrosion resistance decreased significantly at 80oC, meanwhile, the defects concentration ND of the formed passivation film increased, its thickness Wsc decreased, and thestability deteriorated, meanwhile, the semi-conductivity of the passivation film transforms from n-type semiconductor to p-type semiconductor by potential above 0.7 V. Results of XPS spectra show that Cr2O3and Fe(Ⅲ) etc. could improve the corrosion resistance by stabilizing the passivation film, and ligands $\mathrm{NH}_{4}^{+}$ and NH3 could inhibit the corrosion process by acting as retardant to acidic solutions. The presence of a critical temperature is associated with an increase in the solubility of N and $\mathrm{NH}_{4}^{+}$ in the passivation film at 80oC. The increase in temperature simultaneously promotes the generation of soluble Fe(H2PO4)2 and porous films, and the significant enrichment of Ni and N in S31655 leads to a decrease in the precipitation rate of Cr2O3, but also promotes the full crystallization and structural stability of Cr2O3, thereby improving its corrosion resistance.

Key words:  material corrosion and protection      wet process phosphoric acid corrosion      electrochemistry      passivation film      nitrogen containing austenitic stainless steel     
Received:  14 December 2023     
ZTFLH:  TG142.71  
Fund: National Natural Science Foundation of China(12075274)
Corresponding Authors:  ZHANG Jianbin, Tel: 13519630320, E-mail: jbzhangjb@hotmail.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.590     OR     https://www.cjmr.org/EN/Y2024/V38/I12/902

Fig.1  Microstructure characterization of S31655 (a) optical image; (b) XRD pattern results
Fig.2  Polarization behavior of S31655 in wet process phosphoric acid (a) S31655 and S31603 at 25oC; (b) S31655 at various temperatures
SteelT / oCEcorr / VIcorr / μA·cm2Ip / μA·cm2Eb / V
S3160325-0.32351.63254.9340.729
S3165525-0.1840.6991.5091.069
40-0.1591.0771.7121.047
60-0.1532.9862.1991.023
80-0.1785.5043.2581.014
Table 1  Polarization parameters of S31655 in wet process phosphoric acid at different temperatures
Fig.3  I-t curves of S31655 in wet process phosphoric acid at different temperatures (a) current density-time transients; (b) lgI-lgt plots
Fig.4  Corrosion morphology of S31655 after constant potential polarization in wet process phosphoric acid (a) 25oC; (b) 80oC
T / oCIss / mA·cm-2n
251.60 × 10-40.87
401.94 × 10-40.83
603.68 × 10-40.82
807.39 × 10-30.71
Table 2  Constant potential polarization parameters of S31655 in wet process phosphoric acid at different temperatures
Fig.5  Electrochemical impedance spectroscopy of S31655 in wet process phosphoric acid at different temperatures (a) Nyquist piots; (b) Bode plots
T / oCL / H·cm2RS / Ω·cm2Q / Ω-1·cm-2·SnnR1 / Ω·cm2C / F·cm-2R2 / Ω·cm2
251.17 × 10-61.745.58 × 10-50.897.57 × 1033.09 × 10-42.29 × 103
401.17 × 10-61.596.36 × 10-50.912.81 × 1031.22 × 10-35.23 × 102
601.05 × 10-61.266.81 × 10-50.921.96 × 1035.55 × 10-44.94 × 102
801.11 × 10-61.157.15 × 10-50.921.19 × 1023.49 × 10-44.42 × 102
Table 3  EIS fitting parameters of S31655 in wet process phosphoric acid at different temperatures
T / oCαND / cm-3
2511.8 × 1090.79 × 1021
409.5 × 1090.95 × 1021
6010.2 × 1090.9 × 1021
805 × 1091.8 × 1021
Table 4  The donor density of S31655 in wet process phosphoric acid at different temperatures
Fig.6  Mott Schottky curves of S31655 in wet process phosphoric acid at different temperatures (a) capacitance-potential; (b) space charge layer thickness-potential
Fig.7  XPS spectrogram of S31655 passivation film in wet process phosphoric acid (a) O1s; (b) Cr2p; (c) Fe2p; (d) Ni2p; (e) N1s; (f) P2p
Fig.8  Composition of passivation film of S31655 in wet process phosphoric acid at different temperatures (a) elemental composition; (b) species composition
1 Wu X B. The corrosion characteristics of wet process phosphoric acid plants and the selection of anti-corrosion materials for main equipment [J]. Sulfur Phosphorus Des. Powder Eng., 2018, (5): 9
吴雄标. 湿法磷酸装置的腐蚀特点及主要设备的防腐选材[J]. 硫磷设计与粉体工程, 2018, (5): 9
2 Zhang Y, Zhang X, Chen S Y, et al. The effect of phosphoric acid concentration on the corrosion resistance and passivation film characteristics of 316L stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42(5): 819
张 媛, 张 弦, 陈思雨 等. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响 [J]. 中国腐蚀与防护学报, 2022, 42(5): 819
3 Ouyang M H, Pan J, Cai F M, et al. Corrosion behaviour of super ferritic stainless steel 020Cr25MoCuNbTi in the waste phosphoric acid of a surface treatment process [J]. Corros. Sci., 2023, 212: 110
4 Ben Salah M, Sabot R, Refait P, et al. Passivation behaviour of stainless steel (UNS N-08028) in industrial or simplified phosphoric acid solutions at different temperatures [J]. Corros. Sci., 2015, 99: 320
5 Escrivà-Cerdán C, Blasco-Tamarit E, García-García D M, et al. Effect of potential formation on the electrochemical behaviour of a highly alloyed austenitic stainless steel in contaminated phosphoric acid at different temperatures [J]. Electrochim. Acta, 2012, 80: 243
6 Li K M, Liu J, Zhang X Y, et al. Corrosion behavior of Ti6Al4V titanium alloy carburized layer in HF [J]. J. Mater. Res., 2019, 33 (7): 543
李坤茂, 刘 静, 张晓燕 等. Ti6Al4V钛合金渗碳层在HF中的腐蚀行为 [J]. 材料研究学报, 2019, 33(7): 543
doi: 10.11901/1005.3093.2018.650
7 Escrivà-Cerdán C, Blasco-Tamarit E, García-García D M, et al. Effect of temperature on passive film formation of UNS N08031 Cr-Ni alloy in phosphoric acid contaminated with different aggressive anions [J]. Electrochim. Acta, 2013, 111: 552
8 Ben salah M, Sabot R, Triki E, et al. Passivity of Sanicro28 (UNS N-08028) stainless steel in polluted phosphoric acid at different temperatures studied by electrochemical impedance spectroscopy and Mott-Schottky analysis [J]. Corros. Sci., 2014, 86: 61
9 Rosalbino F, Angelini E, Zanicchi G, et al. Electrochemical corrosion study of Sn-3Ag-3Cu solder alloy in NaCl solution [J]. Electrochim. Acta, 2009, 54(28): 7231
10 Lin Y H, Du R G, Hu R G, et al. Research on the correlation between corrosion resistance of stainless steel passivation films and semiconductor properties [J]. J. Phys. Chem., 2005, (7): 740
林玉华, 杜荣归, 胡融刚 等. 不锈钢钝化膜耐蚀性与半导体特性的关联研究 [J]. 物理化学学报, 2005, (7): 740
11 Du C Y, Liu C, Zhang M, et al. The effect of formic acid concentration on the corrosion passivation activation transition behavior of 316L stainless steel [J]. J. Eng. Sci., 2022, 44(8): 1379
杜晨阳, 刘 畅, 张 铭 等. 甲酸浓度对316L不锈钢腐蚀钝化-活化转变行为的影响 [J]. 工程科学学报, 2022, 44(8): 1379
12 Li L F, Caenen P, Celis J P. Effect of hydrochloric acid on pickling of hot-rolled 304 stainless steel in iron chloride-based electrolytes [J]. Corros. Sci., 2008, 50(3): 804
13 Kim J D, Pyun S I. Effects of electrolyte composition and applied potential on the repassivation kinetics of pure aluminium [J]. Electrochim. Acta, 1995, 40(12): 1863
14 Fernández Domene R M, Blasco Tamarit E, García García D M, et al. Repassivation of the damage generated by cavitation on UNS N08031 in a LiBr solution by means of electrochemical techniques and confocal laser scanning microscopy [J]. Corros. Sci., 2010, 52(10): 3453
15 Qiao Y X, Zheng Y G, Ke W, et al. Electrochemical behaviour of high nitrogen stainless steel in acidic solutions [J]. Corros. Sci., 2009, 51(5): 979
16 Park J J, Pyun S I, Lee W J, et al. Effect of bicarbonate ion additives on pitting corrosion of type 316L stainless steel in aqueous 0.5 M sodium chloride solution [J]. Corrosion. 1999, 55(4): 380
17 Osório W R, Brito C, Peixoto L C, et al. Electrochemical behavior of Zn-rich Zn-Cu peritectic alloys affected by macrosegregation and microstructural array [J]. Electrochim. Acta, 2012, 76: 218
18 Gao J. Research on local corrosion behavior of economical nickel type stainless steel [D]. Shanghai: Fudan University, 2010
高 娟. 经济节镍型不锈钢局部腐蚀行为研究 [D]. 上海: 复旦大学, 2010
19 Metikoš Huković M, Pilić Z, Babić R, et al. Influence of alloying elements on the corrosion stability of CoCrMo implant alloy in Hank's solution [J]. Acta Biomater., 2006, 2(6): 693
20 Xin S S. Research on the corrosion behavior of 316L stainless steel in hot concentrated seawater [D]. Shanghai: Shanghai University, 2015
辛森森. 316L不锈钢在热浓缩海水中的腐蚀行为研究 [D]. 上海: 上海大学, 2015
21 Luo H, Gao S, Dong C, et al. Characterization of electrochemical and passive behaviour of alloy 59 in acid solution [J]. Electrochim. Acta, 2014, 135: 412
22 Prabakaran K, Rajeswari S. Electrochemical, SEM and XPS investigations on phosphoric acid treated surgical grade type 316L SS for biomedical applications [J]. J. Appl. Electrochem., 2009, 39(6): 887
23 Guo T M, Xu X J, Zhang Y W, et al. Corrosion behavior of Q345q bridge steel and Q345qNH weathering steel in simulated industrial atmosphere+deicing salt mixed media [J]. J. Mater. Res., 2020, 34(6): 434
郭铁明, 徐秀杰, 张延文 等. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为 [J]. 材料研究学报, 2020, 34(6): 434
doi: 10.11901/1005.3093.2019.501
24 Lei M K, Zhu X M. Role of nitrogen in pitting corrosion resistance of a high-nitrogen face-centered-cubic phase formed on austenitic stainless steel [J]. J. Electrochem. Soc., 2005, 152(8): B291
25 Gray J J, Hayes J R, Gdowski G E, et al. Rapid assessment of the influence of solution pH, anion concentration and temperature on the dissolution of alloy 22 [J]. J. Electrochem. Soc., 2006, 153: B61
[1] Jin ZHANG, Ning WANG, Chong ZHAO, Jiaxing LI, Tianchi ZHANG. Synthesis and Performances of Silver Vanadate For Battery of Implantable Medical Devices[J]. 材料研究学报, 2018, 32(7): 555-560.
[2] Zhaohui GAO, Jianwei CHI, Maoyong TANG, Yanjun WANG, Jianping XU. Synthesis and Electrochemical Performance of Spherical Porous Vanadium Nitride[J]. 材料研究学报, 2018, 32(11): 867-873.
[3] ZHANG Yuhui YI Qingfeng**. Preparation and Electrochemical Activity of Fe/Co/N/MWCNTs Catalysts for Oxygen Reduction Reaction[J]. 材料研究学报, 2013, 27(4): 367-374.
[4] SHENG Minqi,ZHONG Qingdong, LV Chenkai, WAN Kang. Preparation of Co-Ni Alloy Coatings by Ultrasound Electrodeposition[J]. 材料研究学报, 2013, 27(3): 267-272.
[5] LI Zhenhua SHENG Minqi ZHONG Qingdong WANG Yi WU Hongyan DU Hailong. Influence of Surface Roughness of Matrix on Chromium Coatings on the Surface of H13 Steel[J]. 材料研究学报, 2010, 24(5): 455-463.
[6] GU Xunlei SHAN Yuqiao LIU Changsheng YU Xiaozhong. Research of magnetron sputtered Al–Mg alloy coatings on high-speed electro-galvanizing steel[J]. 材料研究学报, 2009, 23(5): 529-533.
[7] CUI Zhuoxing SHAO Zhongcai LIU Zhiyuan ZHAO Lixin TIAN Yanwen. Effects of additives on properties of ceramic coatings formed by micro-arc oxidation on AZ91D Mg alloy[J]. 材料研究学报, 2009, 23(2): 193-198.
[8] ZENG Chaoliu Zhang Jianqing Wu Weitao (Institute of Corrosion and Protection of Metals;Corrosion Science Lab;Chinese Academy of Sciences)Li Dong (Institute of Metals Research;Chinese Academy of Sciences). HOT CORROSION OF Ti_3Al INTERMETALLIC COMPOUND[J]. 材料研究学报, 1993, 7(5): 376-379.
[9] ZHANG Yunshan;LIU Ruixia(Northeast Institute of Technology). PROPERTIES OF THE OXYGEN EVOLUTION ELECTRODE DSA OF THE TYPE Ti-MnO_x[J]. 材料研究学报, 1992, 6(1): 47-51.
No Suggested Reading articles found!