Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (12): 909-917    DOI: 10.11901/1005.3093.2017.403
Current Issue | Archive | Adv Search |
Influence of Doping with Metal Ions Co2+, Mn2+ and Cu2+ on Absorbability of Nano Ni-Zn Ferrite
Zhijun MA(), Changye MANG, Junce WANG, Xingyuan WENG, Liwei SI, Zhihao GUAN
College of Mining, Liaoning Technical University, Fuxin 123000, China
Cite this article: 

Zhijun MA, Changye MANG, Junce WANG, Xingyuan WENG, Liwei SI, Zhihao GUAN. Influence of Doping with Metal Ions Co2+, Mn2+ and Cu2+ on Absorbability of Nano Ni-Zn Ferrite. Chinese Journal of Materials Research, 2017, 31(12): 909-917.

Download:  HTML  PDF(4560KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Powder of nano Ni-Zn ferrite was doped with Co2+, Mn2+ and Cu2+ respectively with hydrothermal method, which then was characterized by means of XRD, TEM, and VNA in terms of the doping effect on the particle size, morphology, and electromagnetic wave absorption performance of the doped powders. Meanwhile, plain nanometer Co-Ni-Zn ferrite was also prepared by hydrothermal method for varying Co2+ content. Results show that after doping, the particle morphology changed from spherical one to irregular quadrilateral one with the average particle size 35~60 nm. The lattice constant also increases from 0.8404 to 0.8352 nm for Co2+ doping. The Co2 + doping can change the position of the absorption peaks, increase the bandwidth of the absorber, and improve the performance of the materials in GHz low frequencies. The doping ratio of Mn2+ can affect the lattice constant of the nano Ni-Zn ferrite, but nano particles are easy to agglomerate, thus Mn2+doping exhibited negative effect on the absorbance performance. For the doping of Cu2+, particles are still apt to agglomerate, however, with a dopant dose of 0.15Cu2+(atomic fraction), the absorbing performance of nano Ni-Zn ferrite powder became better.

Key words:  foundation discipline in materials science      ferrite hydrothermal method      microwave absorbing properties     
Received:  03 July 2017     
ZTFLH:  TM277  
Fund: Supported by National Natural Science Foundation of China (No. 51372108)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.403     OR     https://www.cjmr.org/EN/Y2017/V31/I12/909

Fig.1  The nanocomposite ferrite process flowchart
Fig.2  X-ray diffraction graph patterns of samples prepared with different Co2+ content
Fig.3  TEM of samples prepared with different Co2+ content (a) 1#, x=0.05; (b) 2#, x=0.10; (c) 3#, x=0.15; (d) 4#, x=0.20; (e) 5#, x=0.25
Fig.4  Curves of tanδ and frequency for Ni0.6Zn(0.4-x)-CoxFe2O4 sample
Structural formula 2θ /(°) a /nm (311) Priority crystallization diffraction peak
FWHM/rad Intensity/a.u. Size/nm
Ni0.6Zn0.4Fe2O4 35.62 0.8352 0.3828 468.56 20.53
Ni0.6Zn0.35Co0.05Fe2O4 35.53 0.8360 0.2362 411.33 34.94
Ni0.6Zn0.30Co0.10Fe2O4 35.49 0.8362 0.1968 460.33 41.93
Ni0.6Zn0.25Co0.15Fe2O4 35.44 0.8373 0.1680 555.33 49.12
Ni0.6Zn0.20Co0.20Fe2O4 35.58 0.8381 0.1574 499.67 52.44
Ni0.6Zn0.15Co0.25Fe2O4 35.34 0.8404 0.1378 487.33 59.86
Table 1  Composition and structure parameters of ferrite
Fig.5  Curves of reflectivity and frequency for Ni0.6Zn(0.4-x)-CoxFe2O4 sample
Fig.6  X-ray diffraction graph patterns of samples prepared with different Mn2+ content
Fig.7  TEM of samples prepared with different Mn2+ content (a) 1#, x=0.05; (b) 2#, x=0.10; (c) 3#, x=0.15; (d) 4#, x=0.20; (e) 5#, x=0.25
Structural formula 2θ /(°) a /nm (311)Priority crystallization diffraction peak
FWHM/rad Intensity/a.u. Size/nm
Ni0.6Zn0.4Fe2O4 35.62 0.8352 0.3828 468.56 20.53
Ni0.6Zn0.35Mn0.05Fe2O4 35.61 0.8354 0.3023 346.33 27.31
Ni0.6Zn0.30Mn 0.10Fe2O4 35.58 0.8362 0.2833 360.33 29.14
Ni0.6Zn0.25Mn 0.15Fe2O4 35.24 0.8382 0.2520 488.00 32.72
Ni0.6Zn0.20Mn 0.20Fe2O4 35.49 0.8440 0.2475 571.67 33.34
Ni0.6Zn0.15Mn 0.25Fe2O4 35.44 0.8395 0.2046 574.67 40.34
Table 2  Composition and structure parameters of ferrite
Fig.8  Curves of tanδ and frequency for Ni0.6Zn(0.4-x)Mnx-Fe2O4 sample
Fig.9  Curves of reflectivity and frequency for Ni0.6Zn(0.4-x)-MnxFe2O4 sample
Fig.10  X-ray diffraction graph patterns of samples prepared with different Cu2+ content
Structural formula 2θ /(°) a /nm (311)Priority crystallization diffraction peak
FWHM/rad Intensity/a.u. Size/nm
Ni0.6Zn0.4Fe2O4 35.62 0.8352 0.3828 468.56 20.53
Ni0.6Zn0.35Cu0.05Fe2O4 35.51 0.8365 0.1384 658.67 59.63
Ni0.6Zn0.30Cu0.10Fe2O4 35.51 0.8370 0.1578 718.00 52.30
Ni0.6Zn0.25Cu0.15Fe2O4 35.56 0.8380 0.1774 654.33 46.53
Ni0.6Zn0.20Cu0.20Fe2O4 35.54 0.8380 0.1971 532.67 41.87
Ni0.6Zn0.15Cu0.25Fe2O4 35.45 0.8390 0.2542 496.67 32.46
Table 3  Composition and structure parameters of ferrite
Fig.11  TEM of samples prepared with different Cu2+ content (a) 1#, x=0.05; (b) 2#, x=0.10; (c) 3#, x=0.15; (d) 4#, x=0.20; (e) 5#, x=0.25
Fig.12  Curves of tanδ and frequency for Ni0.6Zn(0.4-x)Cux-Fe2O4 sample
Fig.13  Curves of reflectivity and frequency for Ni0.6Zn(0.4-x)-CuxFe2O4 sample
[1] Zhang Y, Xue X X.Effect of doping rare-earth oxide on microwave absorbing properties of Ni-Zn Ferrite/Al-alloy foams[J]. J. Chin. Rare Earth Soc., 2009, 27: 52(张瑜, 薛向欣. 稀土氧化物对Ni-Zn铁氧体/泡沫铝吸波性能的影响[J]. 中国稀土学报, 2009, 27: 528)
[2] He H H, Deng L W.New progress was made in the study of nanomagnetic absorbing materials[J]. Funct. Mater. Inf., 2005, 2(2): 8(何华辉, 邓联文. 纳米磁性吸波材料研究新进展[J]. 功能材料信息, 2005, 2(2): 8)
[3] Wang J H, Liu Y C, Liu D C, et al.Effect of electromagnetic field strength on Ni0.35Zn0.65Fe2O4 as performed by combustion synthesis[J]. J. Magn. Magn. Mater., 2009, 321: 3646
[4] Zheng S F, Xiong G X, Huang H Q, et al.Study on relation of morphology, properties and preparations of ferrites[J]. Mater. Rev., 2009, 12(23): 26(郑淑芳, 熊国宣, 黄海清等. 铁氧体制备、形貌与性能的关系研究[J]. 材料导报, 2009, 12(23): 26)
[5] Zhao X M, Liu Y J.Dielectric properties of ferrite/silicon carbide/graphite Three-layer composite coating materials[J]. J. Mater. Eng., 2017, 45(1): 33(赵晓明, 刘元军. 铁氧体/碳化硅/石墨三层涂层复合材料介电性能[J]. 材料工程, 2017, 45(1): 33)
[6] Zhao H T, Zhang Q, Liu R P, et al.Synthesis and magnetic properties of monodisperse ZnFe2O4 nanoparticles[J]. J. Mater. Eng., 2016, 44(1): 103(赵海涛, 张强, 刘瑞萍等. 单分散纳米锌铁氧体的制备及其磁性能[J]. 材料工程, 2016, 44(1): 103)
[7] Ramesh S, Sekhar B C, Rao P S V S, et al. Microstructural and magnetic behavior of mixed Ni-Zn-Co and Ni-Zn-Mn ferrites[J]. Ceram. Int., 2014, 40: 8729
[8] Zhao H T, Wang Q, Liu R P, et al.Synthesis and characterization of MnZn ferrite at low temperature[J]. J. Mater. Eng., 2016, 44(11): 73(赵海涛, 王俏, 刘瑞萍等. 锰锌铁氧体的低温合成及表征 [J]. 材料工程, 2016, 44(11): 73)
[9] Xiong Z, Liu L, Hu H, et al.Influence of ion doping on electromagnetic property of W-type Ba-ferrite[J]. J. Mater. Sci. Eng., 2013, 31: 664(熊征, 刘棱, 胡辉等. 离子掺杂对W型钡铁氧体电磁特性的影响[J]. 材料科学与工程学报, 2013, 31: 664)
[10] Gama A M, Rezende M C, Dantas C C.Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials[J]. J. Magn. Magn. Mater., 2011, 323: 2782
[11] Shinde T J, Gadkari A B, Vasambekar P N.Magnetic properties and cation distribution study of nanocrystalline Ni-Zn ferrites[J]. J. Magn. Magn. Mater., 2013, 333: 152
[12] Kumar S, Kumar P, Singh V, et al.Synthesis, characterization and magnetic properties of monodisperse Ni, Zn-ferrite nanocrystals[J]. J. Magn. Magn. Mater., 2015, 379: 50
[13] Huo J Z, Wei M Z.Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method[J]. Mater. Lett., 2009, 63: 1183
[14] Zhong Z F, Li Q, Zhang Y L, et al.Synthesis of nanocrystalline Ni-Zn ferrite powders by refluxing method[J]. Powder Technol., 2005, 155: 193
[15] Peng S.Preparation and characterization of body performance of nickel zinc by hydrothermal method[D]. ChangSha:Central South University, 2007(彭穗. 水热法制备镍锌铁氧体及性能表征[D]. 长沙: 中南大学, 2007)
[16] Chen Y Y, Shen J H,Kong W Q, et al.Preparation and electromagnetic loss properties of nickel-zinc ferrite/expanded graphite/polyaniline composites[J]. Chinese Journal of Inorganic Chemistry,2015, 31(2): 243(陈瑶瑶, 沈俊海, 孔卫秋等. 镍锌铁氧体/膨胀石墨/聚苯胺复合物的电磁损耗性能[J]. 无机化学学报, 2015, 31(2): 243)
[17] Li Q Q, Meng M N, Wang Q, et al.Research progress in preparation of ferrite wave-absorbing materials[J]. Journal of Wuhan Institute of Technology, 2016, 38(2): 125(李倩茜, 孟美娜, 王琼等. 铁氧体吸波材料的制备方法研究进展[J]. 武汉工程大学学报, 2016, 38(2): 125)
[18] Deng N, Zhou L, Peng X L, et al.Preparation and characterization of nickel-zinc ferrites by a solvothermal method[J]. Rare Metal Mater. Eng., 2015, 44: 2126
[19] Wang H W, Kung S C.Crystallization of nanosized Ni-Zn ferrite powders prepared by hydrothermal method[J]. J. Magn. Magn. Mater., 2004, 270: 230
[20] Aphesteguy J C, Damiani A, DiGiovanni D, et al. Microwave-absorbing characteristics of epoxy resin composites containing nanoparticles of NiZn- and NiCuZn-ferrites[J]. Physica B, 2009, 404: 2713
[21] Wang S F, Hsu Y F, Chou K M, et al.Effects of co-dopants on the magnetic properties of Ni-Zn ferrites[J]. J. Magn. Magn. Mater., 2015, 374: 402
[22] Xie Y Y.Preparation of Ni-Zn ferrite nano-composites,magnetic and microwave absorption properties[D]. Hefei: Anhui University, 2012(谢延玉. 镍锌铁氧体纳米复合材料的制备、磁性能与微波吸收特性[D]. 合肥: 安徽大学, 2012)
[23] Xia Z G, Liu Y.Progress in the application of surfactants in the science of nanometer materials[J]. Chemical Reagents, 2005, 27(4): 207(夏志国, 刘云. 表面活性剂在纳米材料科学中的应用[J]. 化学试剂, 2005, 27(4): 207
[24] Huan F, Xie Z G, Chen J W, et al.Research progress of low frequency wave absorption materials[J]. Materials Review, 2014, 28(1): 17(宦峰, 谢国治, 陈将伟等. 低频吸波材料研究进展[J]. 材料导报, 2014, 28(1): 17)
[25] Chen T, Li T H, Li S S, et al.Research progress of wave absorption materials[J]. Materials Review, 2011, 25(15): 50(程涛, 李铁虎, 李莎莎等. 吸波材料的研究进展[J]. 材料导报, 2011, 25(15): 50)
[26] Chang C B.Studies on the preparation and microwave absorbing properties of Ni(0.5)Zn(0.5)Fe2O4 ferrite-based nanocomposite materials[D]. Taiyuan: North University of China, 2011(常传波. Ni(0.5)Zn(0.5)Fe2O4 铁氧体基纳米复合材料的制备及其吸波性能研究[D]. 太原: 中北大学, 2011)
[27] Azhagushanmugam S J, Suriyanarayanan N, Jayaprakash R.Synthesis and characterization of nanocrystalline Ni(0.6) Zn(0.4) Fe2O4 spinel ferrite magnetic material[J]. Phys. Proc., 2013, 49: 44
[28] Alvarez G, Montiel H, Barron J F, et al.Yafet-Kittel-type magnetic ordering in Ni0.35Zn0.65Fe2O4 ferrite detected by magnetosensitive microwave absorption measurements[J]. J. Magn. Magn. Mater., 2010, 322: 348
[29] Ramesh S, Sekhar B C, Rao P S V S, et al. Microstructural and magnetic behavior of mixed Ni-Zn-Co and Ni-Zn-Mn ferrites[J]. Ceram. Int., 2014, 40: 8729
[30] Weng X Y, Zhang Q, Wang J C, et al.Absorption properties of composite materials for the encapsulation of Nano- ferroferric oxide in mesoporous materials[J]. Curr. Org. Chem., 2016, 20: 1143
[31] Chen X G, Ye Y, Cheng J P.Recent progress in electromagnetic wave absorbers[J]. Journal of Inorganic Materials, 2011, 26(5): 449(陈雪刚, 叶瑛, 程继鹏. 电磁波吸收材料的研究进展[J]. 无机材料学报, 2011, 26(5): 449)
[32] Zhuang J, Chen X P, Chi Y H, et al.Synthesis by solid state reaction and electromagnetic loss property of nanometer Ni0.5Zn0.5Fe2O4 ferrite[J]. Function Materials, 2006, 1(37): 43(庄稼, 陈学平, 迟燕华等. 纳米Ni0.5Zn0.5Fe2O4铁氧体的制备及电磁损耗特性研究[J]. 功能材料, 2006, 1(37): 43)
[33] Liu J Y.Preparation and formation mechanism of nanometer-sized zinc oxide by homogeneous precipitation[D]. Changsha: Central South University, 2004(刘景亚. 纳米氧化锌均匀沉淀法制备及理论研究[D]. 长沙:中南大学, 2004)
[1] Qingsheng LIU, Shaojun ZENG, Dancheng ZHANG. Numerical Analysis in Mesoscopic Scale and Experimental Verification for Sodium Expansion Induced Stress of Cathode Carbon Blocks[J]. 材料研究学报, 2017, 31(9): 703-713.
[2] Ruiting MA,Xiao WANG,Haitao ZHAO. Microwave Absorbing and Magnetic Properties of the Polyaniline-Co0.7Cr0.1Zn0.2Fe2O4 Composites[J]. 材料研究学报, 2015, 29(8): 622-626.
[3] Hongzhen DUAN,Liping CHEN Guohong ZHAO. Preparation of Hollow Microspheres of ZnxCo1-xFe2O4 Magnet[J]. 材料研究学报, 2014, 28(10): 763-768.
No Suggested Reading articles found!