Please wait a minute...
Chinese Journal of Materials Research  2013, Vol. 27 Issue (1): 97-102    DOI:
Current Issue | Archive | Adv Search |
The Densification of Rapid Solidification High Temperature Titanium Alloy Powder by Hot Isostatic Pressing
LI Shaoqiang1, 2 CHEN Zhiyong1 WANG Zhihong3 LIU Jianrong1 WANG Qingjiang1*
YANG Rui1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. Western Superconducting Technologies Co. Ltd., Xi'an 710018
3. AVIC Shenyang Engine Design & Research Inistitute, Shenyang 110000
Cite this article: 

LI Shaoqiang,CHEN Zhiyong WANG Zhihong LIU Jianrong WANG Qingjiang*
YANG Rui. The Densification of Rapid Solidification High Temperature Titanium Alloy Powder by Hot Isostatic Pressing. Chinese Journal of Materials Research, 2013, 27(1): 97-102.

Download:  PDF(9178KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  ABSTRACT The densification process and mechanism of a rapid solidification high temperature titanium alloy by hot isostatic pressing has been investigated systemically. The relative density of the hot isostatic pressing (HIP) specimen at 500 ℃ increased from the initial packing density of 64.5% to 81% through approaching and rearrangement of powder particles. The relative density of the specimen HIPed at 500-700 ℃ increased to 97% through plastic deformation of powder particles during which the interparticle contact areas become larger. The relative density of the specimen HIPed at above 700 ℃ increased through powder particles power-law creep and lattice / boundary diffusion.
ZTFLH:  TG146.23  

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2013/V27/I1/97

1 F. H. Froes, H. Friedrich, J. Kiese, D. Bergoint, Titanium in the family automobile: the cost challenge, JOM, 56(2), 40(2004)
2 D. Whittaker, B. Ginty, B. Hopkins, Finding pathways to future titanium success, Met. Powder Rep., 60(10), 27(2005)
3 E. B. Taddei, V. A. R. Henriques, C. R. M. Silva, C. A. A. Cairo, Characterization of Ti-35Nb-7Zr-5Ta alloy produced by powder metallurgy, Mater. Sci. Forum, 498-499, 34(2005)
4 L. Wang, Z. B. Lang, H. P. Shi, Properties and forming process of prealloyed powder metallurgy Ti-6Al-4V alloy, Trans. Nonferrous Met. Soc. China, 17, 639(2007)
5 M. Jackson, K. Dring, A review of advances in processing and metallurgy of titanium alloys, Mater. Sci. Tech., 22(8), 881(2006)
6 F. H. Froes, R. Carbonara, Application of rapid solidification, J. Metals., 40, 20(1988)
7 C. Suryanarayana, F. H. Froes, R. G. Rowe, Rapid solidification processing of titanium-alloys, Int. Mater. Rev., 36(3), 85(1991)
8 N. F. Anoshkin, G. G. Demchenkov, Material science and technological aspects of rapidly solidified titanium alloy production, Mater. Sci. Eng. A, 243, 263(1998)
9 S. J. Savage, F. H. Froes, Production of rapidly solidified metals and alloys, J. Metals., 36, 20(1984)
10 U. Habel, B. J. Mctiernan, HIP temperature and properties of a gas-atomized g-titanium aluminide alloy, Intermetallics, 12(1), 63(2004)
11 TANG Huiping, HUANG Baiyun, LIU Yong, OUYANG Hongwu, Progress in the densification of powder metallurgical titanium alloys, Rare Metal Materials and Engineering, 32(9), 677(2003)
(汤慧萍, 黄伯云, 刘 咏, 欧阳洪武, 粉末冶金钛合金致密化研究的进展, 稀有金属材料工程, 32(9), 677(2003))
12 M. Dietze, H. P. Buchkremer, D. St?ver, Densification behavior of a PM titanium alloy during HIP, Met. Powder Rep., 46(10), 30(1991)
13 K. T. Kim, H. C. Yang, Densification behavior of titanium alloy powder during hot pressing, Mater. Sci. Eng., A313, 46(2001)
14 K. T. Kim, H. C. Yang, S. T. Hong, Densification behavior of titanium alloy powder compacts at high temperature, Powder Metall., 44(1), 34(2001)
15 D. P. Delo, R. E. Dutton, S. L. Semiatin, H. R. Piehler, Modeling of hot isostatic pressing and hot triaxial compaction of Ti-6Al-4V powder, Acta Mater., 47(11), 3159(1999)
16 H. V. Atkinson, S. Davies, Fundamental aspects of hot isostatic pressing: an overview, Metall. Mater. Trans. A, 31A, 2981(2000)
[1] CAI Yusheng, HAN Hongzhi, REN Dechun, JI Haibin, LEI Jiafeng. Effect of Chemical Etching Process on Surface Roughness of TC4 Ti-alloy Fabricated by Laser Selective Melting[J]. 材料研究学报, 2022, 36(6): 435-442.
[2] DIAO Wei, DU Lei, WANG Yanbo, ZHOU Haitao, SUN Jingli. Anisotropy of Ti6Al4V Alloy Fabricated by Selective Laser Melting[J]. 材料研究学报, 2022, 36(3): 231-240.
[3] WANG Jun, WANG Kelu, LU Shiqiang, LI Xin, OUYANG Delai, QIU Qian, GAO Xin, ZHANG Kaiming. Strain Compensation Physical Constitutive Model and Processing Map of TA5 Titanium Alloy[J]. 材料研究学报, 2022, 36(3): 175-182.
[4] LIU Chao, WANG Xin, MEN Yue, ZHANG Haoyu, ZHANG Siqian, ZHOU Ge, CHEN Lijia, LIU Haijian. Dynamic Recrystallization of Ti-6Al-4V Alloy During Hot Compression[J]. 材料研究学报, 2021, 35(8): 583-590.
[5] SU Nan, CHEN Minghe, XIE Lansheng, LUO Feng, SHI Wenxiang. Dynamic Mechanical Characteristics and Constitutive Model of TC2 Ti-alloy[J]. 材料研究学报, 2021, 35(3): 201-208.
[6] WANG Pengyu, ZHANG Haoyu, ZHANG Zhipeng, SUN Jie, XIE Guangming, CHENG Jun, CHEN Lijia. Effect of Solution Temperature on Microstructure and Tensile Properties of a Metastable β -Ti Alloy Ti-4Mo-6Cr-3Al-2Sn[J]. 材料研究学报, 2020, 34(6): 473-480.
[7] LIU Zhongde** LUO Rui CHENG Xiaonong ZHOU Xinghua
ZHANG Yingtao YAN Feixiang. Investigation on Biocompatibility of Micro-arc#br#Oxidation Ti6Al4V Alloy[J]. 材料研究学报, 2013, 27(4): 355-359.
No Suggested Reading articles found!