Please wait a minute...
Chin J Mater Res  2011, Vol. 25 Issue (1): 32-38    DOI:
论文 Current Issue | Archive | Adv Search |
Preparation and High Temperature Phase Stability of La2O3–Y2O3–ZrO2 Composite Ceramic Nanopowder
HE Yilun ZHOU, Wuxi LI Songlin, LIU Huaifei, LAI Tianmiao, TANG Shenglong
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083
Cite this article: 

HE Yilun ZHOU Wuxi LI Songlin LIU Huaifei LAI Tianmiao TANG Shenglong. Preparation and High Temperature Phase Stability of La2O3–Y2O3–ZrO2 Composite Ceramic Nanopowder. Chin J Mater Res, 2011, 25(1): 32-38.

Download:  PDF(956KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  4.5%Y2O3–ZrO2, 0.6%La2O3–YSZ, 0.8%La2O3–YSZ, 1.2%La2O3–YSZ (YSZ, 0.6La, 0.8La, 1.2La) (molar fraction) composite ceramic nanopowders were prepared by co–precipitation method using ZrOCl2·8H2O, Y(NO3)3·6H2O, La2O3 as raw materials. The synthesized powders were characterized and the phase stability was investigated. The results show that the size of 0.6La particles prepared by reverse titration method is ∼20 nm, and the size of particles prepared by the straight titration method is ∼50 nm. The agglomeration of the powder prepared by reverse titration method is also smaller than that of the powder prepared by straight titration method. After calcined at 600oC for 2 h, all of the synthesized powders showed the pure tetragonal structure; after sintered at 1200oC  for 100  h, 0.6La, 0.8La showed the pure tetragonal structure, the cubic phase composed of both of YSZ and 1.2La and pyrochlore structure compose of 1.2La; after sintered at 1300  for 100 h, 0.6La, 0.8La, 1.2La showed the tetragonal structure, the cubic phase compose of all synthesized powders and pyrochlore structure compose of 1.2La and small fraction of monoclinic phase (∼1.5%) was formed of YSZ; after sintered at 1400oC  for 100h, the tetragonal phase cannot keep stable, monoclinic phase compose of all the synthesized powders, the monoclinic phase content of 0.6La, 0.8La, 1.2La, YSZ is 30.5%, 32%, 35%, 46.0% respectively. The phase stability of YSZ can be modified by addition small fraction of La2O3 at 1300oC.
Key words:  inorganic non–metallic materials        rare–earth co–doped zirconia        nanopowder        co–precipitation        phase stability     
Received:  20 May 2010     
ZTFLH: 

TB321

 
Fund: 

Supported by the Program for New Century Excellent Talents in University No.CET–06–0683.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2011/V25/I1/32

1 M.Matsumoto, K.Aoyama, H.Matsubara, K.Takayama, T.Banno, Y.Kagiya, Y.Sugita, Thermal conductivity and phase stability of plasma sprayed ZrO2–Y2O3–La2O3 coatings, Surface and Coating Technology, 194, 31(2005)

2 M.Matsumoto, N.Yamaguchi, H.Matsubara, Low thermal conductivity and high temperature stability of ZrO2–Y2O3–La2O3 coatings produced by electron beam PVD, Scripta Materialia, 50, 867(2004)

3 X.Huang, D.Wang, M.Lamontagne, C.Moreau, Experimental study of the thermal conductivity of metal oxides co–doped yttria stabilized zirconia, Materials Science and Engineering B, 149, 63(2008)

4 F.M.Pitek, C.G.Levi, Opportunities for TBCs in the ZrO2–YO1.5–TaO2.5 system, Surface & Coatings Technology, 201, 6044(2007)

5 R.L.Jones, R.F.Reidy, D.Mess, Scandia, yttria–stabilized zirconia for thermal barrier coatings, Surface and Coatings Technology, 82, 70(1996)

6 M.N.Rahaman, J.R.Gross, R.E.Dutton, H.Wang, Phase stability, sintering, and thermal conductivity of plasma– sprayed ZrO2–Gd2O3 compositions for potential thermal barrier coating applications, Acta Materialia, 54, 1615(2006)

7 M.Matsumoto, H.Takayama, D.Yokoe, K.Mukai, H.Matsubara, Y.Kagiya, Y.Sugita, Thermal cycle behavior of plasma sprayed La2O3,Y2O3 stabilized ZrO2 coatings, Scripta Materialia, 50, 2035(2006)

8 H.Dai, X.Zhong, J.Li, Y.Zhang, J.Meng, X.Cao, Thermal stability of double–ceramic–layer thermal barrier coatings with various coating thicknes, Materials Science and Engineering

A, 433, 1(2006)

9 C.Viazzi, J.P.Bonino, F.Ansart, A.Barnab´e, Structural study of metastable tetragonal YSZ powders produced via sol–gel route, Journal of Alloys and Compounds, 452, 377(2008)

10 H.Chen, C.X.Ding, Nanostruetured zirconia coating prepared by atmospheric plasma spraying, Surface and Coatings Technology, 150, 31(2002)

11 ZHOU Hong, LI Fei, HE Bo, WANG Jun, SUN Baode, Nanostructured yttria stabilized zirconia coatings deposited by air plasma spraying, Transactions of Nonferrous Metals Society of China, 17, 389(2007)

12 ZHOU Hongming, YI Danqing, Research on preparation and thermophysical properties of Dy2Zr2O7 ceramic powder, Journal of Aeronautical Materials, 28(1), 65(2008)

(周宏明, 易丹青, 热障涂层用Dy2Zr2O7陶瓷粉末制备及其热物理性能研究, 航空材料学报, 28(1), 65(2008))

13 Y.T.Moon, H.K.Park, D.K.Kim, C.H.Kim, I.S.Seog, Preparation of monodisperse and spherical zirconia powders by heating of alcohol–aqueous salt solution, Journal American Ceramic Society, 78(10), 2690(1995)

14 Z.C.Michael, E.P.Andrew, H.B.Charls, Sol–gel and ultra–fine particle formation via dielectric tuning of inorganic salt–alcohol–water solutions, Journal of Colloid and Interface

Science, 222(1), 20(2000)

15 J.Y.Choi, D.K.Kim, Preparation of monodisperse and spherical powders by heating of alcohol–aqueous salt solutions, Journal of Sol–Gel Science and Technology, 15(3),

231(1999)

16 H.Chen, Y.Gao, Y.Liu, H.Luo, Coprecipitation synthesis and thermal conductivity of La2Zr2O7, Journal of Alloys and Compounds, 480, 843(2009)

17 H.Yang, J.Ouyang, X.Zhang, N.Wang, C.Du, Synthesis and optical properties of yttria–doped ZrO2 nanopowders, Journal of Alloys and Compounds, 458, 474(2008)

18 J.Sun, L.Gao, pH effect on titania–Phase transformation of precipitates from titanium tetrachloride solutions, Journal of American Ceramic Society, 85(9), 2382(2002)

19 S.G.Chen, Y.S.Yin, D.P.Wang, J.Li, Reduced activation energy and crystalline size for yttria–stabilized zirconia nano–crystals: An experimental and theoretical study, Journal of Crystal Growth, 267, 100(2004)

20 S.G.Chen, Y.S.Yin, D.P.Wang, Experimental and theoretical investigation on the correlation between aqueous precursors structure and crystalline phases of zirconia, Journal

of Molecular Structure, 690, 181(2004)

21 GE Rongde, ZHAO Tiancong, Computer simulation on the structure of colloidal aggregates formed during chemical precipitation, Journal of Central South Institute of Mining and Metallurgy, 24(5), 607(1993)

(葛荣德, 赵天从, 化学沉淀过程中形成的胶粒团聚体结构的计算机模拟, 中南矿冶学院学报,  24(5), 607(1993))

22 M.Leoni, R.L.Jones, P.Scardi, Phase stability of scandia–yttria–stabilized zirconia TBCs, Surface and Coatings Technology, 108–109, 107(1998)

23 C.Viazzi, J.P.Bonino, F.Ansrat, A Barnab´e, Structural study of metastable tetragonal YSZ powders produced via sol–gel route, Journal of Alloys and Compounds, 452, 377(2008)

24 LIU Huaifei, LI Songlin, LI Qilian, LI Yongming, ZHOU Wuxi, Preparation and phase stability at high temperatures of La2O3, Y2O3 codoped ZrO2 ceramic poeder., Jounal of Inorganic Materials, 24(6), 1(2009)

(刘怀菲, 李松林, 李其连, 李勇明, 周伍喜, 热障涂层用La2O3, Y2O3共掺杂ZrO2陶瓷粉末的制备及其相稳定性研究, 无机材料学报,  24(6), 1(2009))

25 X.Q.Cao, Application of rare earths in thermal barrier coating materials, Journal of Materials Science and Technology, 23(1), 15(2007)

26 E.R.Andrievskaya, L.M.Lopato, Influence of composition on the T→M transformation in the systems ZrO2–Ln2O3 (Ln=La, Nd, Sm, Eu), Journal of Materials Science, 30, 2591(1995)

27 J.W.Jang, D.J.Kim, D.Y.Lee, Size effect of trivalent oxides on low temperature phase stability of 2Y–TZP, Journal of Materials Science, 36, 5391(2001)
[1] ZHANG Jingxian HONG Qiuhong SUN Xuetong ZHANG Xinping. Preparation and Properties of Porous TiO2/HA/TiO2 Composite Coating[J]. 材料研究学报, 2012, 26(6): 572-576.
[2] ZHANG Wenjie CHEN Jinlei WANG Hong HE Hongbo. Effects of Calcination Temperature on the Photocatalytic Activity of In–TiO2 Nano–material[J]. 材料研究学报, 2012, 26(6): 561-566.
[3] FANG Yihang, YANG Qinghua, LI Hongwei, WANG Huanping, MA Hongping, XU Shiqing. Low Temperature Sintering and Performance of CBS/Al2O3 Glass–Ceramic Doped With Li2CO3[J]. 材料研究学报, 2012, 26(5): 515-520.
[4] LIN Xiaoyan YANG Weihua YANG Wutao WANG Meiqing. Preparation and Characterization of Ti-Supported PbO2 Electrode Doped with Rare Earth Er[J]. 材料研究学报, 2012, 26(4): 367-371.
[5] GAO Jiacheng WU Shufang YANG Xiaodong CHANG Xin. Effect of Pre–oxidation Powders on Sintering Properties of Uranium Dioxide Pellets[J]. 材料研究学报, 2012, 26(3): 279-283.
[6] LIU Jia NI Wen YU Miao. Preparation of High–strength Concrete by Using Fly Ash and Iron Ore Tailings as Major Raw Materials[J]. 材料研究学报, 2012, 26(3): 295-301.
[7] WEI Xiaoqing NI Xingyuan SHEN Jun ZU Guoqing ZHANG Zhihua DU Ai. Synthesis of Thermal Insulation Material Alumina Aerogels and Thermal Properties[J]. 材料研究学报, 2012, 26(3): 261-266.
[8] ZHANG Wenjie YANG Bo. Synthesis and Photocatalytic Properties of B–doped TiO2[J]. 材料研究学报, 2012, 26(2): 149-154.
[9] MENG Jinhong CHEN Weihong LIU Yu SUN Jie CAO Xiaohui WANG Wenju YU Mingxun. Synthesis of the Plate–shaped Barium Ferrites by the Second Chemical Co–precipitation Method and Investigation of the Magnetic Properties[J]. 材料研究学报, 2012, 26(1): 107-112.
[10] YANG Wutao YANG Weihua FU Fang. Preparation and Characterization of PbO2 Electrode Modified With a Mixture of PEG and CPB[J]. 材料研究学报, 2012, 26(1): 8-12.
[11] WEI Xiaoling YANG Hui SHEN Xiaodong. The Effect of Titania Dopant on the Performance of Sodium-beta''–alumina[J]. 材料研究学报, 2011, 25(6): 597-601.
[12] XI Xiaowang HU Linhua LIU Weiqing DAI Songyuan. Electron Transport Research in Dye–Sensitized Solar Cells Based on 4–Tert–Butylpyridine[J]. 材料研究学报, 2011, 25(6): 613-617.
[13] DONG Hongzhou DONG Lifeng. Research on Electrocatalytic Activity of Carbon Nanotube–Supported Pt–bimetallic Nanoparticles for Methanol and Ethanol Oxidations[J]. 材料研究学报, 2011, 25(6): 579-584.
[14] NI Zifeng LIU Liguo WANG Yongguang. Synthesis and Characterization of Silica Nanowires Catalysted by Tin[J]. 材料研究学报, 2011, 25(2): 183-186.
[15] QI Enlei MAN Liying WANG Sunhao WANG Jieqiang. Microwave Homogeneous Synthesis and Photocatalytic Property of CeO2 Nanorods[J]. 材料研究学报, 2011, 25(2): 219-224.
No Suggested Reading articles found!