Please wait a minute...
Chin J Mater Res  2008, Vol. 22 Issue (6): 639-644    DOI:
论文 Current Issue | Archive | Adv Search |
Effects of parameters of vibrating wavelike sloping plate process on microstructures of Al–6Si–2Mg alloy
 XIE Fengguang1†; GUAN Renguo2; WANG Chao2; LIU Xianghua1
1.State Key Lab. of Rolling & Automation; Northeastern University; Shenyang 110004
2.Materials & Metallurgical College; Northeastern University; Shenyang 110004
Cite this article: 

XIE Fengguang; GUAN Renguo; WANG Chao; LIU Xianghua. Effects of parameters of vibrating wavelike sloping plate process on microstructures of Al–6Si–2Mg alloy. Chin J Mater Res, 2008, 22(6): 639-644.

Download:  PDF(1247KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effects of parameters of Vibrating Wavelike Sloping Plate process (VWSP) on solidification microstructures  of Al–6Si–2Mg alloy were investigated. The results show that sloping angle and sloping plate length can  affect the shear strength and shear time of the flow alloy on the sloping plate and thus influence alloy  microstructure. When the casting temperature is in the range from 660℃ to 690 ℃, grain refining and  spheroidization proceed with the decrease of casting temperature, the average grain size is 40 μm and  the average grain roundness is 2.5. When the casting temperature is lower than 660℃, dendrite  coarsening appears. The vibrating of the sloping plate can lead the nucleus forming on the sloping plate  surface to escape off the sloping plate and disperse in the melt, which not only can effectively avoid grain  connecting and solidification shell happening but also can improve the nucleation rate and refine microstructure.  With the increase of vibration frequency, grain roundness decreases first and then increases, when the vibration  frequency is in the range from 50 Hz to 60 Hz, the grain roundness reaches the minimum value. Wavelike sloping  plate surface had a stirring function on the flowing alloy, which improved the shear strength in the alloy and  caused grains became finer and more round.

Key words:  Wavelike sloping plate;Vibrating;Semisolid;Solidification microstructure     
Received:  03 June 2008     
ZTFLH: 

TG111

 
  TG244

 

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2008/V22/I6/639

1 M C Flemings, Behavior of metal alloys in the semisolid state, Metall. Trans, 22A, 957(1991)
2 MAO Weimin, ZHAO Aimin, ZHONG Xueyou, Spherical microstructure formation of the semisolid high chromium cast iron Cr20Mo2, Acta Metallurgica Sinica, 17(1),77(2004)
3 T Y Liu, H V Atkinson, P Kapranos, D H Kirkwood, Rapid compression of aluminum alloys and its relationship to thixoformability, Metallurgical and Materials Transactions, 34A(7), 1545(2003)
4 MAO Weimin, ZHEN Zisheng, CHEN Hongtao, Microstructure of semi–solid AZ91D alloysolidified during electromagnetic stirring, Chinese Journal of Materials Research, 19(3), 303(2005)
(毛卫民, 甄子胜, 陈洪涛, 电磁搅拌对半固态AZ91D镁合金组织的影响, 材料研究学报, 19(3), 303(2005))
5 Z Fan, Semisolid metal processing, International Materials Reviews, 47(2), 49(2002)
6 WU Shusen, WU Xueping, XIAO Zehui, A model of growth morphology for semisolid metals, Acta Materialia, 52(12), 3519(2004)
7 GUAN Renguo, WANG Shuncheng, WEN Jinglin, A continuous semisolid extending–extrusion process for producing AA2017 aluminum alloy flat bar, Mater. Sci. Tech., 22(6), 706(2006)
8 T Haga, Semisolid strip casting using a twin roll caster equipped with a cooling slope, J. of Mater. Proc. Tech., 130(20), 558(2002)
9 T Haga, T Kenta, I Masaaki, Twin roll casting aluminum alloy strips, J. of Mater. Proc. Tech., 153(10), 42(2004)
10 GUAN Renguo, WANG Chao, XING Zhenhuan, Novel sloping plate process for semisolid metal forming, Materials Science and Technology, 23(4), 438(2007)
11 GUAN Renguo, KANG Liwei, DU Haijun, SHANG Jianhong, WEN Jinglin, Preparing semisolid billet of Al– 3%Mg alloy by sloping shearing process, The Chinese Journal of Nonferrous Metals, 16(5), 812(2006)
(管仁国, 康立文, 杜海军, 尚剑洪, 温景林, 倾斜式冷却剪切技术制备Al-3%Mg半固态合金坯料,中国有色金属学报, 16(5), 812(2006))
12 LI Tao, HUANG Weidong, LIN Xin, Formation of globular structure during semisolid materal processing, The Chinese Journal of Nonferrous Metals, 10(5), 636(2000)
(李涛, 黄卫东, 林鑫, 半固态处理中球形晶形成与演化的直接观察, 中国有色金属学报, 10(5), 636(2000))
13 S.C.Wang, F.Cao, R.G.Guan, Formation and evolution of non–dendritic microstructures of semi–solid A2017 alloy prepared by SCR process. J. Mater. Sci. Tech., 22(2), 5(2006)

[1] HOU Xiaoying XU Yunbo WU Di. Microstructure and Mechanical Properties of 980 MPa Grade Hot Rolled V-microalloyed TRIP Steel[J]. 材料研究学报, 2011, 25(2): 158-164.
[2] WANG Qingliang SUN Yanmin ZHANG Lei. The Mechanism of Fatigue Crack Initiation of 2024–T3 and 2524–T34 Aluminum Alloys[J]. 材料研究学报, 2011, 25(1): 67-72.
[3] AN Zhiguo; MAO Weimin. Analysis on tensile deformation and fracture behaviors of grain oriented electrical steels at low temperature[J]. 材料研究学报, 2009, 23(5): 478-482.
[4] ZHAO Yang CHEN Liqing LIU Xianghua. Effect of specimen size on bending fatigue behavior of a new kind of micro-alloyed forging steel[J]. 材料研究学报, 2009, 23(4): 444-448.
[5] MA Li WANG Maoqiu SHI Jie HUI Weijun DONG Han. Rolling contact fatigue of microalloying case carburized gear steels[J]. 材料研究学报, 2009, 23(3): 251-256.
[6] LI Wei YAN Xiaowei WANG Jingdai YANG Yongrong Alina BUDA . Cr-catalyzed ethylene copolymers studied by solid-state 1H NMR techniques: the influence of hexene content and different duration grades polyethylene pipe[J]. 材料研究学报, 2009, 23(3): 242-250.
[7] ZHANG Yutuo LI Donghui WANG Chengzhi LI Yiyi. Simulation of dendrite growth of Fe–C alloy using phase field method[J]. 材料研究学报, 2009, 23(3): 317-322.
[8] YAN Wei WANGQing Jiang Rong SUNFeng Jiu WANG Qimin. Cyclic oxidation behavior of arc--ion plating Ti--Al--(Cr) coatings on Ti--60 titanium alloy[J]. 材料研究学报, 2009, 23(3): 231-236.
[9] ZHAO Tan ZHANG Yun CHEN Guang LOU Langhong. The creep rupture properties of a low Re content second-generation directionally solidified superalloy DZ59[J]. 材料研究学报, 2009, 23(2): 158-164.
No Suggested Reading articles found!