Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (12): 939-948    DOI: 10.11901/1005.3093.2020.206
ARTICLES Current Issue | Archive | Adv Search |
Study on Microstructure and Toughness of Simulated Coarse Grain Heated Zone in Normalized V-N-Ti and Nb-V-Ti Marine Steel
SHI Zhongran1,2(), ZHAO Qingkai3, LIU Denghui3, WANG Tianqi1,2, CHAI Xiyang1,2, LUO Xiaobing1,2, CHAI Feng1,2
1.Department of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
2.National New Material Production and Application Demonstration Platform (Advanced Marine Engineering and High-tech Ship Materials), Luoyang 471000, China
3.Cnooc China Limited Tianjing Branch, Tianjin 300452, China
Cite this article: 

SHI Zhongran, ZHAO Qingkai, LIU Denghui, WANG Tianqi, CHAI Xiyang, LUO Xiaobing, CHAI Feng. Study on Microstructure and Toughness of Simulated Coarse Grain Heated Zone in Normalized V-N-Ti and Nb-V-Ti Marine Steel. Chinese Journal of Materials Research, 2020, 34(12): 939-948.

Download:  HTML  PDF(7415KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and toughness of the simulated coarse grain heat affected zone (CGHAZ) of the normalized microalloying offshore steels V-N-Ti and Nb-V-Ti were investigated by means of a welding thermal simulator. The results show that the perculiar microstructure led to better CGHAZ toughness for the V-N-Ti steel. For V-N-Ti steel, the high N content increases the precipitation temperature of Ti-rich (Ti, V)(C, N) particles and the ferrite nucleation ability, so that refines the original austenite grain and decreases the effective grain size with high boundary tolerance angle 15o, hence, the fine polygonal ferrite could efficiently deflect or even arrest the propagation of cleavage microcracks, so it had good low temperature CGAHZ toughness. While there exist chain-like M-A on original austenite grain boundaries, coarse original austenite grains and larger amount of fine grains with high boundary tolerance angle 15o that may be responsible to the lower simulated CGHAZ toughness of Nb-V-Ti steel.

Key words:  V-N-Ti steel      normalized steel      simulated CGHAZ      polygonal ferrite     
Received:  30 May 2020     
ZTFLH:  TG406  
Fund: Shandong Provincial Natural Science Foundation of China(ZR201911170022)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.206     OR     https://www.cjmr.org/EN/Y2020/V34/I12/939

SteelsCSiMnPSAlsTiVNbNCeqPcm
Nb-V-Ti0.160.161.600.0120.0030.030.0080.02~0.10.02~0.040.0040.440.25
V-N-Ti0.150.281.550.0090.0010.040.0110.02~0.1-0.004~0.0150.420.24
Table1  Chemical composition of the tested steel (mass fraction, %)
Fig.1  Schematic diagram of heat affected zone of multilayer multipass welding
Fig.2  Sampling diagram of welding joint
No.Interpass temperature/℃Current/AVoltage/V

Travel speed

/cm·min-1

Heatinput

/kJ·cm-1

1Room temperatureFront arc: 750Front arc: 353052.5105
Rear arc: 680Rear arc: 3652.5
2135Front arc: 750Front arc: 343051102
Rear arc: 675Rear arc: 3651
3147Front arc: 750Front arc: 343051100
Rear arc: 680Rear arc: 3649
4155Front arc: 750Front arc: 34305199
Rear arc: 680Rear arc: 3548
5161Front arc: 750Front arc: 34305199
Rear arc: 680Rear arc: 3548
6157Front arc: 750Front arc: 343051102
Rear arc: 670Rear arc: 3851
7163Front arc: 750Front arc: 343051103
Rear arc: 660Rear arc: 3852
8169Front arc: 750Front arc: 34305199
Rear arc: 650Rear arc: 3748
9158Front arc: 750Front arc: 343051102
Rear arc: 670Rear arc: 3851
Table 2  Welding parameters of double submerged-arc welding
Fig.3  Impact of simulated CGHAZ at different temperature. (a) simulated CGHAZ; (b) welded joint
Fig.4  Simulated CGHAZ microstructures of experimental steels. (a, b) V-N-Ti steel;(c, d) Nb-V-Ti steel
Fig.5  TEM micrographs of M-A in simulated CGHAZ. (a, b) V-N-Ti steel; (c, d) Nb-V-Ti steel
Fig.6  Prior austenite grain size of simulated CGHAZ in experiment steels. (a) V-N-Ti steel, (b) Nb-V-Ti steel
Fig.7  EBSD orientation images with grain boundary misorientation distribution at cooling times of t8/5 30 s. (a, c) V-N-Ti steel; (b, d) Nb-V-Ti steel
Fig.8  TEM carbon replica analysis micrographs of particles in simulated CGHAZ. (a, c) V-N-Ti steel; (c, d) Nb-V-Ti steel
Fig.9  SEM micrographs showing impact fracture surface morphologies. (a) V-N-Ti steel, (b) Nb-V-Ti steel
Fig.10  SEM analysis of cross-sectional area beneath fracture surface for the impact specimen of experimental steels fractured at -60℃. (a) V-N-Ti steel; (b, c) Nb-V-Ti steel
Fig.11  Mass fraction of second phase precipitates as a function of temperature for the experimental steels. (a) V-N-Ti steel; (b) Nb-V-Ti steel
Fig.12  The effect grain size with tolerance 15o was distinguished by EBSD. (a) V-N-Ti steel; (b) Nb-V-Ti steel
SsteelsM-A/%Stripy M-A/%Massive M-A/%The size of Stripy M-A/μmThe size of massive M-A/μm
V-N-Ti3.891.452.444.510.78
Nb-V-Ti4.311.442.874.020.42
Table 3  Results of M-A quantitative statistics
Fig.13  SEM micrograph and precipitates morphology for simulated CGHAZ in V-N-Ti steel (a) SEM micrograph and (b) precipitate morphology and chemical composition
1 Yang C F, Su H. Research and development of high performance shipbuilding and marine engineering steel [J]. Iron and steel, 2012, 47(12): 1
杨才福, 苏航. 高性能船舶及海洋工程用钢的开发 [J]. 钢铁, 2012, 47(12): 1
2 Zhao J. Progress on high quality ship steel and marine engineering steel in China [J]. Mater. Rev., 2018, 32(S1): 428
赵捷. 我国高品质船舶、海洋工程用钢研究进展 [J]. 材料导报, 2018, 32(S1): 428
3 Du W, Li H L. Status and development trends of offshore platform steels Ⅰ [J]. Pet. Instrum., 2016, 2(3): 5
杜伟, 李鹤林. 海洋石油平台用钢的现状与发展趋势(一) [J]. 石油管材与仪器, 2016, 2(3): 5
4 Tian L, Min X J, Wen Z G. Comparative analysis of TMCP steel/normalizing and performance of offshore platform with large wall thickness [J]. Shipbuilding China, 2015, 56(2): 266
田磊, 闵祥军, 温志刚. 海洋平台大壁厚TMCP钢/正火及性能对比分析 [J]. 中国造船, 2015, 56(2): 266
5 Ma G T, Tang H S, Wang Y X, et al. Development of 130 mm Q345EZ35 ultra heavy plates for wind towers [J]. Shandong Metall., 2012, 34(2): 13
马光亭, 汤化胜, 王月香等. 130mm Q345EZ35风电塔简用特厚钢板的研制开发 [J]. 山东冶金, 2012, 34(2): 13
6 Chai F, Shi Z R, Yang C F, et al. Effect of nitrogen on microstructure and mechanical properties for simulated CGHAZ of normalized vanadium micro-alloyed steel [J]. Chin. J. Mater. Res., 2019, 33: 848
柴锋, 师仲然, 杨才福等. 氮对钒微合金钢粗晶热影响区(CGHAZ)的组织和性能的影响 [J]. 材料研究学报, 2019, 33: 848
7 Lu F, Chai F, Cheng G P, et al. Study on continuous cooling transformation behavior of coarse grain Heat-Affected zone in V-N-Ti and Nb-V-Ti microalloyed offshore platform steels [A].HSLA Steels 2015, Microalloying2015 & Offshore Engineering Steels 2015: Conference Proceedings [C]. Cham: Springer, 2016: 525
8 Hu J, Du L X, Xie H, et al. Microstructure and mechanical properties of TMCP heavy plate microalloyed steel [J]. Mater. Sci. Eng., 2014, 607A: 122
9 Hu J, Du L X, Wang J J, et al. Effect of welding heat input on microstructures and toughness in simulated CGHAZ of V-N high strength steel [J]. Mater. Sci. Eng., 2013, 577A: 161
10 Hu J, Du L X, Wang J J. Effect of V on intragranular ferrite nucleation of high Ti bearing steel [J]. Scr. Mater., 2013, 68: 953
11 Shi Z R, Yang C F, Wang R Z, et al. Effect of nitrogen on the microstructures and mechanical properties in simulated CGHAZ of vanadium microalloyed steel varied with different heat inputs [J]. Mater. Sci. Eng., 2016, 649A: 270
12 Iza-Mendia A, Gutiérrez I. Generalization of the existing relations between microstructure and yield stress from ferrite–pearlite to high strength steels [J]. Mater. Sci. Eng., 2013, 561A: 40
13 Guo A M, Misra R D K, Liu J B, et al. An analysis of the microstructure of the heat-affected zone of an ultra-low carbon and niobium-bearing acicular ferrite steel using EBSD and its relationship to mechanical properties [J]. Mater. Sci. Eng., 2010, 527A: 6440
14 Díaz-Fuentes M, Iza-Mendia A, Gutiérrez I. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior [J]. Metall. Mater. Trans., 2003, 34A: 2505
15 Fang F, Yong Q L, Yang C F, et al. Microstructure and precipitation behavior in HAZ of V and Ti microalloyed steel [J]. J. Iron Steel Res. Int., 2009, 16: 68
16 Xu W W, Wang Q F, Pan T, et al. Effect of welding heat input on simulated HAZ microstructure and toughness of a-VN microalloyed steel [J]. J. Iron Steel Res. Int., 2007, 14: 234
17 Strid J, Easterling K E. On the chemistry and stability of complex carbides and nitrides in microalloyed steels [J]. Acta Metall., 1985, 33: 2057
[1] XUN Yu, YAN Wei, SHI Xianbo, ZHANG Chuanguo, SHAN Yiyin, YANG Ke, REN Yi. Strain Hardening Behavior of Polygonal Ferrite and Acicular Ferrite Dual-phase Pipeline Steel[J]. 材料研究学报, 2022, 36(8): 561-570.
[2] CHAI Feng,SHI Zhongran,YANG Caifu,WANG Jiaji. Effect of Nitrogen on Microstructure and Mechanical Properties for Simulated CGHAZ of Normalized Vanadium Micro-alloyed Steel[J]. 材料研究学报, 2019, 33(11): 848-856.
No Suggested Reading articles found!