材料研究学报, 2024, 38(12): 911-921 DOI: 10.11901/1005.3093.2024.188

研究论文

基于N含量调控的Ti微合金钢凝固过程中TiN析出行为研究

陈瑞洋1, 裘欣2, 丁汉林,1, 王子健1, 项重辰1

1 苏州大学沙钢钢铁学院 苏州 215137

2 苏州城市学院光学与电子信息学院 苏州 215104

Study on Precipitation Behavior of TiN Particles during Solidification Process of Ti-microalloyed Steels Based on Control of N Content

CHEN Ruiyang1, QIU Xin2, DING Hanlin,1, WANG Zijian1, XIANG Chongchen1

1 School of Iron and Steel, Soochow University, Suzhou 215137, China

2 School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China

通讯作者: 丁汉林,教授,dinghanlin@suda.edu.cn,研究方向为高性能金属材料开发及强韧化机理

责任编辑: 吴岩

收稿日期: 2024-04-25   修回日期: 2024-05-31  

基金资助: 国家自然科学基金(52174367)

Corresponding authors: DING Hanlin, Tel:(0512)67165762, E-mail:dinghanlin@suda.edu.cn

Received: 2024-04-25   Revised: 2024-05-31  

Fund supported: National Natural Science Foundation of China(52174367)

作者简介 About authors

陈瑞洋,男,1999年生,硕士生

摘要

通过实验观察和理论分析,研究了不同N含量Ti微合金钢凝固过程中TiN的析出行为。结果表明:降低N含量,可减少液相析出的粗大TiN夹杂的数量、体积分数并改变其形貌,同时也降低了固相析出TiN粒子的形核驱动力、粒子尺寸及体积分数。对于Ti元素含量一定的Ti微合金钢,调整N含量可有效调控钢中TiN夹杂和TiN粒子的形貌、大小和体积分数。

关键词: 金属材料; Ti微合金钢; TiN粒子; 凝固偏聚; 析出行为

Abstract

The precipitation behavior of TiN particles during the solidification process of Ti-microalloyed steels with varying N contents was investigated by experimental observations and theoretical analysis. The results indicate that reducing the N content leads to decrease in the number of coarse TiN inclusions precipitated from the liquid phase and changes in the morphology of TiN inclusions, as well as alterations in the driving force for the precipitation and the size of TiN particles precipitated from the solid phase during solidification. Simultaneously, the decrease in N content contributes to the decrease of the volume fraction of TiN particles precipitated from both the liquid and solid phase. It is concluded that the morphology, size and volume fraction of TiN inclusions and precipitated TiN particles within the steel may be controlled by adjusting the N content of Ti-microalloyed steels with a set Ti content.

Keywords: metallic materials; Ti-microalloyed steel; TiN particles; solidification segregation; precipitation behavior

PDF (12971KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈瑞洋, 裘欣, 丁汉林, 王子健, 项重辰. 基于N含量调控的Ti微合金钢凝固过程中TiN析出行为研究[J]. 材料研究学报, 2024, 38(12): 911-921 DOI:10.11901/1005.3093.2024.188

CHEN Ruiyang, QIU Xin, DING Hanlin, WANG Zijian, XIANG Chongchen. Study on Precipitation Behavior of TiN Particles during Solidification Process of Ti-microalloyed Steels Based on Control of N Content[J]. Earth Science, 2024, 38(12): 911-921 DOI:10.11901/1005.3093.2024.188

高强钢可用于海洋工程、军工、高层建筑、核电设备以及重型机械等领域,用Nb、V和Ti微合金化可提高其性能[1~3]。在Ti微合金钢中,Ti元素易与N和/或C元素生成TiN、TiC或其它复合结构[4~6]。在高温加热过程中,TiC往往会发生回溶现象,进而导致其在高温下抑制奥氏体晶粒长大的作用并不大[7,8]。TiN粒子的析出温度较高且在再加热过程中高温稳定性良好,能保持稳定的尺寸和分布[9]。因此,Ti微合金钢中TiN粒子在高温下的析出能固定晶界并细化奥氏体晶粒,有助于提高其性能。

目前对TiN粒子的研究,主要是如何避免其在Ti微合金钢液凝固过程中生成粗大的微米级TiN粒子。这些粗大的TiN粒子是材料断裂过程中裂纹的扩展源,影响其性能[10, 11]。Ti元素在钢中的固溶度随着温度的降低而降低,钢中的TiN粒子不仅有液相析出,还有固相析出[5,12]。与液相析出不同的是,固相析出的TiN粒子尺寸较小,甚至达到纳米级。这些纳米级固相的析出强化和抑制高温奥氏体晶粒长大,对于提高钢材的力学性能至关重要。因此,必须严格控制Ti微合金钢中的Ti和/或N的含量以免生成粗大的TiN粒子并对材料性能造成不可逆转地损害,同时促进一定数量的纳米级TiN粒子的析出[13~15]。本文系统研究Ti微合金钢中TiN粒子在固相及液相中的析出行为,以及N含量的变化对TiN粒子析出的影响。

1 实验方法

实验用钢是用真空熔炼制备的50 kg钢锭,其成分列于表1。三种实验用钢的Ti含量固定为0.01%,改变N含量以改变[Ti]/[N]比。[Ti]/[N]比为0.888、2.083、4.074的钢,分别标记为S1、S2和S3。其中S1钢的N含量高达107 × 10-6。S2和S3钢含有微量的Nb元素,因Nb(C, N)粒子的析出温度较低而本文涉及的温度较高,故不计其对TiN粒子析出的影响。

表1   实验钢的化学成分

Table 1  Chemical compositions of experimental steels (mass fraction, %)

CMnSiTiNNbAlTi/N
S10.1131.510.3270.00950.0107-0.0020.888
S20.161.340.260.01000.00480.0260.0172.083
S30.121.470.40.01100.00270.0440.0074.074

新窗口打开| 下载CSV


将三种钢锭加热至1250℃保温2 h,然后进行多道次热锻制备出厚度为30 mm、宽度为110 mm的锻造坯料。从三种锻坯中分别切取尺寸为10 mm × 10 mm × 10 mm的试样并将其加热至1150℃保温30 min,然后迅速淬火至室温,以观察不同N含量的钢中TiN粒子的形貌和分布特征。热处理后迅速淬火是为了抑制冷却过程中粒子的析出和粗化。

将热处理后的样品研磨和抛光,在蔡司M2m型偏光显微镜下观察其中粗大的第二相粒子。将磨抛后的小试样电解腐蚀,腐蚀液为5%的高氯酸和冰醋酸混合溶液,腐蚀电流为300 mA,腐蚀时间为20 s。用SU5000型扫描电子显微镜观察不同成分钢中的细小第二相粒子。

2 结果和讨论

2.1 实验钢中的微米级TiN粒子

图1给出了三种钢在1150℃保温30 min淬火后的金相显微组织。在偏光显微镜下,图1中的白色粒子均为钢中的第二相粒子。对比分析表明,三种实验钢中均析出了一定量大小不一的微米级第二相粒子,但是其形貌明显不同。S1钢中的第二相粒子以方形为主,而S2和S3钢中的第二相粒子其形貌较为复杂。根据表1中的化学成分,不同成分的实验钢中微米级第二相粒子的大小、数量与其N含量密切相关。S1钢中微米级第二相粒子的数量最多,而S3钢中的数量最少,且粗大的第二相粒子尺寸随着N含量的减少而明显减小,即当Ti含量一定时微米级第二相粒子的数量随着N含量的降低而明显减少。

图1

图1   实验钢中第二相粒子的分布和尺寸

Fig.1   Metallographic observation and size analysis of second phase particle distribution (a, b, e) S1, (c, f) S2, (d, g) S3


2.2 钢中TiN粒子的析出

用SEM观察了三种在1150℃保温30 min淬火的钢试样中析出的第二相粒子。根据其大小,第二相粒子大致可分为微米级和亚微米级两种。在三种钢中均观察到大小不一的微米级复合析出,但是其形貌明显不同[16]图2给出了三种钢的SEM照片和EDS能谱,可见三种钢中都析出了微米级TiN粒子。微米级TiN粒子主要以复合析出的形式存在,在S1钢中有MnS夹杂和Al2O3夹杂在TiN夹杂表面形成的复合析出(图2a),与文献[17~19]的结果一致。随着N含量的降低S2钢中的复合析出中TiN夹杂的大小明显减小(图2b),以Al2O3夹杂为主体,TiN、MnS夹杂在Al2O3夹杂周围及表面。由于S3钢的N含量进一步降低,复合析出的主体不是TiN夹杂,且TiN夹杂的尺寸进一步减小,如图2c所示,S3钢中典型的TiN夹杂和Al2O3夹杂在MnS夹杂的表面复合析出。这些结果表明,调控N含量可显著改变夹杂物的形貌,降低N含量也能减小TiN夹杂的尺寸。

图2

图2   钢中液相析出第二相粒子的SEM照片和EDS能谱

Fig.2   SEM observations and EDS energy spectrum analysis of second-phase particles precipitated from liquid phase in steel (a) S1, (b) S2, (c) S3


在三种钢也观察到典型的亚微米级TiN粒子,如图3所示,亚微米级的TiN粒子以单独析出为主,与基体明显不共格。根据对图3d~f的统计,三种钢中亚微米级TiN粒子的尺寸均约为130 nm,且S2钢中亚微米级TiN粒子的尺寸明显地比其他两种钢中的小。微米级TiN粒子主要是在凝固过程中的固液糊状区生成的[20,21]。由于这两个阶段的温度较高,生成的TiN粒子生长较快,但是Ti和N的浓度较低且扩散较慢,因此以亚微米级析出为主。由于MnS、Al2O3是主要的高温稳定物,其在液相析出过程中已与微米级TiN粒子形成了复合析出相(图2),而其他低熔点第二相粒子在再加热的过程中回溶至基体中。

图3

图3   钢中亚微米TiN粒子的分布、形貌和尺寸

Fig.3   Distribution, morphology observation and size analysis of submicron TiN particles in steel (a, d, g) S1, (b, e, h) S2, (c, f, i) S3


2.3 TiN粒子的析出热力学

根据实验结果和文献[5,12],TiN粒子的析出方式可分为四种:凝固前液相直接析出、凝固过程中的液相析出、凝固过程中的固相析出和凝固后固相析出。根据TiN粒子的尺寸可分为三类:微米级TiN粒子、亚微米级TiN粒子和纳米级TiN粒子。

TiN粒子在固相[22]和液相[23]中的固溶度积为

lg[Ti][N]γ=3.94-16586/T
lg[Ti][N]L=0.322-8000/T

式中[Ti]、[N]为钢的固溶基体中Ti元素和N元素的含量。根据实验钢的成分,假定钢的液相线为TL =1515℃,固相线TS = 1480℃,则可计算出三种实验钢在不同温度下Ti含量和N含量的平衡关系,结果在图4中给出。

图4

图4   在不同温度下Ti含量和N含量的平衡关系

Fig.4   Equilibrium relationship between Ti content and N content at different temperatures


图4可见,由于N含量不同,三种钢中TiN粒子的析出方式明显不同。S1钢的N含量较高,在凝固过程中便析出了TiN粒子,而S2和S3钢的N含量较低,Ti、N元素在凝固过程中并未析出,TiN粒子则是在完全凝固后从固相中析出的。在不同阶段析出的TiN粒子,其尺寸的差别较大。从液相中析出的大多为微米级,消耗了大量的Ti、N元素,而固相析出的温度较低,析出的TiN粒子大多为纳米级粒子。

图1~图3可见,在三种钢中均析出了高温复合夹杂物和亚微米级TiN粒子。这表明,S2和S3钢中的TiN粒子并不完全是从凝固后的固相中析出的,可能是在凝固时已经开始析出。在凝固过程中固液相界面的能量较高,溶质原子的偏聚使固液相界面处溶质原子的浓度高于基体中的浓度,使TiN粒子在凝固过程中即开始析出。

2.4 N含量对TiN粒子析出方式的影响

上述热力学分析表明,S1钢在凝固过程中析出TiN,而S2钢和S3钢在固相才开始析出TiN。这一计算结果,与实验结果略有不符。在实际凝固过程中溶质原子的偏析和凝固过程中温度的降低,都导致TiN早期析出[20,21]。假设固相线和液相线均为线性的,则凝固过程中固/液界面处的液体溶质浓度和固溶质浓度可根据经典杠杆法则计算[24]

CL*=C0(1-(1-2αK0)fs)(K0-1)/(1-2αK0)
CS*=K0C0(1-(1-2αK0)fs)(K0-1)/(1-2αK0)

其中CL*为固/液界面处的液态溶质浓度,CS*为固/液界面处的固相溶质浓度,K0为平衡分配系数,fs为凝固过程中的固相分数,α为凝固参数。

由于N元素的扩散系数较大,通常取α = 1,则在凝固过程中固相和液相中N元素的浓度可分别简化为

CL*=C0(1-(1-2K0)fs)(K0-1)/(1-2K0)
CS*=K0C0(1-(1-2K0)fs)(K0-1)/(1-2K0)

而Ti元素的扩散速度较低,根据文献[25]取α = 0.1,则得

CL*=C0(1-(1-0.2K0)fs)(K0-1)/(1-0.2K0)
CS*=K0C0(1-(1-0.2K0)fs)(K0-1)/(1-0.2K0)

为了进一步明确N含量或[Ti]/[N]对TiN粒子析出方式的影响,采用JMatPro分别计算了三种实验钢的固相线及液相线,结果列于表2。计算结果表明,N含量的降低使液相线的温度稍有降低,但是使固相线温度明显提高。这显然影响TiN粒子的析出。在平衡凝固条件下,界面温度为[26]

T=T0-T0-TL1-fsTL-TST0-TS

其中T0为纯溶剂的熔点,TLTS分别为各实验钢的液相线温度和固相线温度。

表2   凝固过程中的参数

Table 2  Parameters used in the solidification process

S1S2S3
Equilibrium distribution coefficient[27], k0(Ti)0.4
Equilibrium distribution coefficient[27], k0(N)0.32
Melting point of pure solvent[27], T0 / K1789
Liquidus, TL / K178817871786
Solidus, TS / K173317461750

新窗口打开| 下载CSV


用公式(5~ 8)可计算出平衡凝固条件下固/液界面处液相和固相中Ti、N溶质的浓度与固相率的关系,如图5所示。可以看出,在凝固过程中三种实验钢的液相和固相中的Ti、N元素均随着固相率的提高而逐渐富集。由于Ti元素的扩散系数较小,界面处Ti元素的富集比N元素更显著,表现为Ti浓度比N浓度提高更快。这一结果表明,由于Ti、N元素富集,当Ti和N的浓度在局部区域达到该温度下形核所需的临界值时,在凝固过程中可能生成TiN粒子核心。三种实验钢中Ti的含量基本相同,因此影响和决定TiN粒子的元素因素主要由N元素决定。随着钢中N浓度的降低N元素在凝固前沿液相和固相中的富集程度也呈现出依次减弱的趋势,显然将影响TiN粒子在液相和固相中的析出。

图5

图5   平衡凝固过程中固/液界面处固相率与溶质浓度的关系

Fig.5   Relationship between solid phase fraction and solute concentration at solid/liquid interface during equilibrium solidification (a, b) liquid phase solute and solid phase solute of S1 steel, (c, d) liquid phase solute and solid phase solute of S2 steel, (e, f) liquid phase solute and solid phase solute of S3 steel


图5给出的结果可计算出考虑溶质元素富集条件下液相和固相中Ti和N元素的浓度积QTiN,而根据 公式(1)和(2)则可计算出平衡凝固条件下液相和固相中Ti和N元素的浓度积KTiN图6给出了三种实验钢在凝固过程中不同固相分数下QTiNKTiN的关系。可以看出,在凝固过程中,S1钢中的固相率达到0.76时开始从液相中析出TiN(图6a),而固相率达到0.84时则开始从固相中析出TiN粒子(图6b)。在S2钢的凝固过程中固相率达到0.92开始从液相中析出TiN(图6c),而固相率达到0.97开始从固相中析出TiN粒子(图6d)。在N含量更低的S3钢的凝固过程中只从液相中析出少量的TiN(图6e),而固相中没有TiN粒子析出(图6f)。结合这一计算结果,在凝固过程中开始从液相中析出TiN时,S1、S2和S3钢中液相的体积分数分别为24%、8%和3%,可见液相较多为粗大的TiN颗粒析出和长大提供了条件。

图6

图6   凝固过程中Ti与N的浓度积与固相率的关系

Fig.6   Relationship between the Ti and N concentration products and the solid phase ratio during the solidification (a, b) Liquid phase and solid phase of S1 steel, (c, d) Liquid phase and solid phase of S2 steel, (e, f) Liquid phase and solid phase of S3 steel


图6给出的结果可进一步解释图1图2中出现粗大TiN颗粒的原因。同时,N含量的降低使凝固过程中固/液前沿处的QTiN明显降低(图5),进而降低了TiN粒子的形核温度[28](如图6所示)。也就是TiN粒子在更低的温度下生成,从而减小了TiN夹杂或TiN粒子的大小和数量,这与图1给出的结果一致。这一结果表明,即使将N含量控制在较低的范围内,也会由于凝固过程中Ti元素的偏聚而使TiN由液相析出,但是控制N含量可减小液相析出TiN粒子的尺寸和减少其数量[29]。因此,为了减少凝固过程中液相和固相中析出的粗大TiN颗粒,应当使N元素的含量较低,即Ti和N含量的乘积不应大于TiN在奥氏体的固溶度乘积,以防止TiN粒子在凝固前析出和TiN粒子过早析出。

2.5 N含量对TiN粒子的尺寸和体积分数的影响

由于在凝固过程中发生了元素偏析,当Ti和N反应在凝固前沿达到平衡时,TiN开始析出并长大。图5中的计算结果表明,TiN开始析出时,无论是残余液相中还是固相中Ti的浓度均远高于N的浓度,因为N元素的扩散远快于Ti元素,因此TiN的生长主要依赖N元素的扩散,其粒子大小决定于N的含量。图7给出了在凝固过程中微观偏析导致液相或固相中N元素富集而促使TiN生长的模型。当偏析引起的局部浓度超过TiN析出的平衡值时TiN即开始形核并生长,此时N的偏析浓度与平衡浓度之间的差值即为TiN形核和生长的驱动力[30]

图7

图7   凝固过程中TiN粒子和TiN夹杂生成的示意图[30]

Fig.7   Schematic diagram of TiN particles and TiN inclusion formation during solidification[30]


图6可见,在不同N含量条件下凝固过程中的TiN在固相及液相中的析出并不完全相同。假定在凝固过程中所有的Ti、N都参与析出,当QTiN > KTiN时TiN才能分别在固相及液相中析出。对于不同N含量的钢,N的扩散通量为

J=DNrρFe100Mm(CL*-CLe)

式中J为N的扩散通量;r为TiN的半径;DN为N的扩散系数,其在液相的扩散系数为3.25 × 10-3 e-11500/RT,在奥氏体相区的扩散系数为0.91 e-168600/RTρFe为钢水或钢的密度,分别为7.07 g/cm3、7.85 g/cm3Mm为钢的摩尔质量,取0.056 kg/mol。

一个TiN粒子周围的质量平衡可表示为

4πr2MTiNJΔt=43πρTiN[(r+Δr)3-r3]      

式中MTiN为TiN的摩尔质量,取0.062 kg/mol;ρTiN为TiN的密度,取5.43 g/cm3

结合 式(10)和(11),TiN的生长速率可表示为

rdrdt=MTiNρFe100MFeρTiNDN(CL*-CLe)

对上式积分可得

r=MTiNρFe50MFeρTiNDN(CL*-CLe)t
t=(1-fSe)(TL-TSRC)

式中RC为冷却速度,TiN粒子的半径可由 式(13)求得。显然,TiN粒子的生长受凝固前沿局部冷却时间的影响,而局部冷却时间又受冷却速度的影响。

假定冷却速度为5 K/s,在凝固过程中从液相和固相中析出的TiN粒子尺寸与固相率的关系,在图 8中给出。可以看出,在三种实验钢的凝固过程中从液相中形成的TiN夹杂的半径均随着固相率的提高而增大(图8a);在凝固初期Ti、N元素的偏聚较少,因此生成的多为亚微米级TiN粒子,在凝固末期Ti、N元素的不断富集(图5)使TiN夹杂的尺寸最大。可以看出,液相析出的TiN夹杂尺寸随着N含量的降低而显著减小(图8a),尤其是N含量较低的S2及S3钢,其凝固末期液相析出的TiN粒子的尺寸甚至只达到亚微米级(图8b)。同样的,随着N含量的降低在凝固过程中从固相中析出的TiN粒子尺寸也明显减小,均为纳米级(图8cd)。这表明,对于含Ti微合金钢,N含量的降低,一方面可减小凝固过程中液相生成的TiN夹杂尺寸,另一方面使固相生成的TiN粒子为纳米级。

图8

图8   Ti微合金钢凝固过程中生成的TiN的尺寸

Fig.8   TiN size during solidification (a, b) liquid phase TiN inclusion size (c, d) solid phase TiN particle size


N含量不仅影响TiN粒子的大小,也影响TiN析出的体积分数。析出的TiN粒子中Ti元素和N元素保持着理想的化学配比,即

Ti-[Ti]N-[N]=ATiAN

式中Ti、N为钢中Ti元素和N元素含量,[Ti]、[N]分别为Ti、N元素在铁基体中的平衡固溶量,ATiAN分别为元素Ti、N的原子质量,ATi/AN = 3.42。根据 式(2)和 式(15),可以求出温度为T时Ti、N元素平衡固溶于铁基体的平衡固溶量[Ti]、[N],而生成TiN粒子消耗的Ti和N元素含量则分别为Ti-[Ti]和N-[N]。由此可计算出在某一温度下从铁基体中平衡析出TiN粒子的体积分数为[31]

f=(Ti-[Ti]+N-[N])dFe100dTiN
(Ti-[Ti])ATi+NANATidFe100dTiN

式中dFedTiN分别为铁基体和TiN的密度值,分别取值7.85 g·cm-3、5.43 g·cm-3

由上分析表明,三种实验钢中TiN的析出方式并不相同。在S1、S2钢的凝固过程中同时存在液相析出和固相析出,而在S3钢的凝固过程中只有液相析出。根据式(1)、(2)、(5)~(9)、(15)、(16)可以计算出凝固过程中析出TiN的体积分数

f=0fSf'dfS/ΔfS

式中f′为凝固过程中液固界面处瞬时析出体积分数,对于S1、S2和rS3的钢,f′的计算结果在图9中给出。结果表明,在S1钢的凝固过程中从液相和固相中析出的TiN体积分数分别为0.00473%,和0.00098%;S2钢中相应的体积分数分别为0.00091%和0.000098%;而S3钢中只有液相析出,其体积分数为0.000098%。这表明,随着钢中N含量的降低,在凝固过程中从液相析出的TiN粒子体积分数随之降低,与图1给出的实验结果吻合。

图9

图9   Ti微合金钢凝固过程中液固界面处TiN粒子瞬时析出的体积分数

Fig.9   Instantaneous precipitation volume fraction of TiN particles at the liquid-solid interface during solidification (a) S1, (b) S2, (c) S3


表3列出了在平衡条件下在1150℃不同过程中析出的TiN粒子的体积分数的计算结果。在S1钢的凝固过程中析出的TiN粒子占比高达34.2%,而随着N含量的降低,在S2和S3钢的凝固过程中析出的TiN粒子的占比逐渐降低。结合图6给出的结果,TiN粒子的体积分数与钢中的N含量密切相关。N含量的降低使固/液前沿处的QTiN减小,是造成凝固过程中TiN粒子体积分数下降的主要原因。而固相中析出的TiN粒子体积分数不仅与N含量有关,更与Ti/N比有关。较低的N含量使大部分Ti元素以固溶的形式存在于基体中,难以析出足够多的TiN粒子,而N含量过高则导致凝固过程中析出的TiN粒子较为粗大。因此,钢中的Ti/N应该略低于理想化学配比(Ti/N≈2)。一方面,可限制Ti元素在基体中的溶解,使TiN粒子的高温稳定性良好;另一方面,Ti原子的溶解减少,使粒子粗化需要的溶解原子扩散增加,从而避免了TiN粒子的粗化。

表3   平衡条件下析出的TiN粒子的体积分数

Table 3  Volume fraction of TiN particles precipitated under equilibrium condition

S1S2S3
Solidus, TS / oC146014731477

TiN inclusion precipitation in solidified liquid phase / %

(The proportion of total precipitation)

0.00473 (28.3%)0.00091 (6.1%)0.00010 (0.9%)

TiN particles precipitation in solidified solid phase / %

(The proportion of total precipitation)

0.000980 (5.9%)0.000051 (0.3%)0

Solid phase TiN particles precipitate at 1150oC / %

(The proportion of total precipitation)

0.01099 (65.8%)0.01404 (93.6%)0.0110 (99.1%)
Total precipitation / %0.01670.01500.0111

新窗口打开| 下载CSV


综上所述,改变钢的N含量可调控高温条件下TiN粒子的析出方式、尺寸和体积分数,进而调控其高温组织和力学性能。

3 结论

(1) N含量的降低使Ti微合金钢中微米级和亚微米级的TiN粒子的尺寸和数量显著减小,也使TiN夹杂减少并改变其形貌。微米级TiN夹杂主要是复合相,而亚微米级的TiN粒子大都是方块状的。

(2) 在Ti微合金钢的凝固过程中Ti和N元素在固液前沿偏聚,使TiN粒子的析出方式改变,尤其是N元素的偏聚是N含量较低的S3钢中仍有少量微米级TiN析出的主要原因。N含量的降低有助于推迟凝固过程中液相中TiN夹杂和固相中TiN粒子的析出,还可降低形核温度和减小TiN夹杂和TiN粒子的尺寸;N含量的提高使液相析出的TiN粒子增加,进而降低固相析出的TiN粒子的体积分数。

(3) 改变钢中的N含量可调控高温下TiN粒子的析出方式、粒子尺寸和析出相体积分数,尤其是可将N元素控制在一个较低的范围以避免过早析出微米级TiN粒子。

参考文献

Sun L, Zhang S, Song R, et al.

Effect of V, Nb, and Ti microalloying on low-temperature impact fracture behavior of non-quenched and tempered forged steel

[J]. Mater. Sci. Eng. A-Struct., 2023, 879: 145299

[本文引用: 1]

Thridandapani R R, Misra R D K, Mannering T, et al.

The application of stereological analysis in understanding differences in toughness of V- and Nb-microalloyed steels of similar yield strength

[J]. Mater. Sci. Eng. A-Struct., 2006, 422(1-2): 285

Hui Y J, Pan H, Liu K, et al.

Strengthening mechanism of 600 MPa grade Nb-Ti microalloyed high formability crossbeam steel

[J]. Acta Metall. Sin., 2017, 53(8): 937

DOI      [本文引用: 1]

Automobile beam steel with high strength is the development trend of the automotive industry, which will help to conserve resources and protect the environment. The crossbeam as an important part of the frame, its strength also affects the overall strength of the frame, which will affect the safety performance of vehicles. At present, the crossbeam steel of heavy-duty vehicles is mainly Q235B and Q345C. About 3% of the crossbeams occur cracking problems when heavy-duty vehicles drive about 10000 km or about half a year or so. The strength increasing will cause the cracking in the forming process. Therefore, it is of great significance to develop a high strength crossbeam steel with high fatigue and high formability. In this work, the microstructure, properties and strengthening mechanism of 600 MPa grade Nb-Ti microalloyed high formability crossbeam steel were investigated by OM, SEM and TEM. The results show that the finish rolling temperature has a considerable influence on the microstructure and mechanical strength, with the decreasing of finish rolling temperature, the ferrite grain size and the size of precipitates decreases gradually; dislocation density, the number of precipitates and the ratio of Nb/Ti increase gradually; both the yield strength and tensile strength increase monotonously, while the elongation has an optimum temperature. The optimal mechanical properties were obtained when the finish rolling temperature is 840 ℃, and the yield strength, tensile strength, elongation and impact energy at -60 ℃ reached 541 MPa, 615 MPa, 31.0% and 117 J, respectively. The NrT and PTT curves of (Nb, Ti)C precipitated in the austenite showed that the nucleation rate of uniform nucleation and dislocation linear nucleation increases and the nucleation time is shortened with the decrease of temperature in the experimental temperature range, which is consistent with the observation result that the size of precipitates decreases with the reduction of the finish rolling temperature, while the number of precipitates increases. The grain refinement strengthening and dislocation strengthening are the main strengthening modes of the steel, the grain refinement strengthening accounts for 46%~48% of the yield strength, the dislocation strengthening accounts for 18%~25%, while the precipitation strengthening only contributes 2% of the yield strength.

惠亚军, 潘 辉, 刘 锟 .

600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制

[J]. 金属学报, 2017, 53(8): 937

DOI      [本文引用: 1]

采用OM、SEM和TEM等方法,对600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的组织与力学性能进行了测试表征,并分析了强化机制。结果表明,终轧温度对实验用钢的组织与力学性能有显著影响,随着终轧温度的降低,钢中铁素体晶粒尺寸逐渐减小,位错密度逐渐增加,析出物尺寸逐渐减小、数量逐渐增多、Nb/Ti原子比逐渐增大,屈服强度与抗拉强度均呈现出单调上升的规律,而延伸率存在一个最佳温度,终轧温度为840 ℃时具有最优的力学性能,其屈服强度与抗拉强分别达到了541与615 MPa,延伸率为31.0%,-60 ℃冲击功为117 J。(Nb, Ti)C在奥氏体中析出的NrT与PTT曲线表明,在实验温度范围内,均匀形核与位错线形核的形核率随温度的降低而提高,形核孕育时间随温度的降低而缩短,这与观察到的析出物尺寸随着终轧温度的降低而减小、析出物的数量随着终轧温度的降低而增多的规律相符。细晶强化与位错强化是实验用钢主要强化方式,细晶强化占总屈服强度的46%~48%,位错强化占总屈服强度的18%~25%,析出强化对屈服强度的贡献较小,约2%左右。

Wang Z, Mao X, Yang Z, et al.

Strain-induced precipitation in a Ti micro-alloyed HSLA steel

[J]. Mater. Sci. Eng. A-Struct., 2011, 529: 459

[本文引用: 1]

Capurro C, Cicutti C.

Analysis of titanium nitrides precipitated during medium carbon steels solidification

[J]. J. Mater. Res. Technol., 2018, 7(3): 342

[本文引用: 2]

Tian Y, Yu H, Zhou T, et al.

Revealing morphology rules of MX precipitates in Ti-V-Nb multi-microalloyed steels

[J]. Mater. Charact., 2022, 188: 111919

[本文引用: 1]

Liu G, Liao T, Wang S, et al.

Revealing the precipitation kinetics of multi-stage and multi-scale Ti-bearing precipitation in a 460 MPa grade HSLA steel

[J]. Mater. Sci. Eng. A-Struct., 2024, 890: 145941

[本文引用: 1]

Wu S X, Chen D F, Wang Q Z, et al.

Thermodynamic study on precipitation of TiN and TiC in continuous casting of titanium microalloyed steel

[J]. Contin. Cast., 2019, 44(1): 28

[本文引用: 1]

吴石新, 陈登福, 汪勤政 .

钛微合金钢连铸中TiN与TiC析出热力学研究

[J]. 连铸, 2019, 44(1): 28

[本文引用: 1]

Medina S F, Chapa M, Valles P, et al.

Influence of Ti and N contents on austenite grain control and precipitate size in structural steels

[J]. ISIJ Int., 1999, 39(9): 930

[本文引用: 1]

Du J L, Strangwood M, Davis C L.

Effect of TiN particles and grain size on the charpy impact transition temperature in steels

[J]. J. Mater. Sci. Technol., 2012, 28(10): 878

[本文引用: 1]

<p>The toughness of ferritic steels is influenced by the grain size distribution, second phase, precipitates and coarse inclusions. In this work an examination of the effect of coarse TiN particles (>0.5&nbsp;&mu;m) and ferrite grain size on the Charpy impact transition temperature in high strength low alloyed steels has been carried out. Steels with high Ti content (up to 0.045 wt%), have been heat-treated and furnace cooled to obtain a ferrite-pearlite microstructure with different ferrite grain sizes. Coarse TiN particle size and ferrite grain size distributions have been measured and Charpy impact testing has been carried out. Scanning electron microscopy (SEM) analysis has been used to measure the grain boundary carbide thickness and to determine if the coarse TiN</br>particles are acting as cleavage initiation sites by fractographic analysis. The Charpy ductile-brittle transition temperatures (DBTT) have been predicted using standard literature equations, and compared to the measured values. The relationship between the ferrite grain size and coarse TiN particle size and number density in terms of whether the coarse TiN particles act as effective cleavage initiation sites is discussed in this paper.</p>

Xing L, Guo J, Li X, et al.

Control of TiN precipitation behavior in titanium-containing micro-alloyed steel

[J]. Mater. Today Commun., 2020, 25: 101292

[本文引用: 1]

Moon J, Lee C, Uhm S, et al.

Coarsening kinetics of TiN particle in a low alloyed steel in weld HAZ: Considering critical particle size

[J]. Acta Mater., 2006, 54(4): 1053

[本文引用: 2]

Duan H, Zhang Y, Ren Y, et al.

Distribution of TiN inclusions in Ti-stabilized ultra-pure ferrite stainless steel slab

[J]. J. Iron Steel Res. Int., 2018, 26(9): 962

[本文引用: 1]

Jin Y L, Du S L.

Precipitation behaviour and control of TiN inclusions in rail steels

[J]. Ironmaking Steelmaking, 2016, 45(3): 224

Guo S, Zhu H Y, Han Y.

Research progress on influence of inclusion on ductility and toughness of steel

[J]. J. Iron Steel Res., 2022, 34(8): 713

DOI      [本文引用: 1]

The ductility and toughness of steel are inextricably linked with the nonmetallic inclusions, how to minimize the damage of inclusions on mechanical properties of steel is an important research priority in the metallurgy and materials field. The effects of inclusions on the ductility and toughness of steel were summarized from the perspective of type, size, number, distribution, and physical properties of inclusions. The fracture mechanism of steel caused by inclusion was also discussed. Then, the relationship between inclusion and mechanical properties of steel is prospected, which could provide a theoretical basis and technical reference for control technology of inclusions.

郭 帅, 朱航宇, 韩 赟 .

夹杂物对钢塑性和韧性的影响研究进展

[J]. 钢铁研究学报, 2022, 34(8): 713

[本文引用: 1]

Li N, Xue Z L, Wang L.

Precipitation mechanism of heterogeneous nucleation of TiN composite inclusions in SWRH 92A tire cord steel

[J]. J. Iron Steel Res., 2022, 34(10): 1118

DOI      [本文引用: 1]

Non-metallic inclusions, such as Tibearing inclusions, existed in highcarbon tire cord steel have significant impacts on steel fatigue strength. Systematic investigation of the precipitation behavior of such inclusions in eutectoid tire cord steel is very important for inclusion precipitation management and product quality improvement. The precipitation behavior of Al2O3TiN composite inclusions in steel was analyzed by using the nucleation theory and thermodynamic coupling model. The results show that TiN inclusions begin to precipitate when the solidification fraction of molten steel is about 0.866 (at 1457K). The segregation ratio of Ti and N is basically the same at the early stage of solidification; and in the late stage of solidification, however, the segregation ratio of Ti is significantly greater than that of N, which are 6.059 and 2.367×10-6, respectively. The heterogeneous nucleation work of TiN inclusion is smaller than its uniform nucleation work; however, its heterogeneous nucleation radius is larger than its uniform nucleation radius; besides, both the nucleation work and nucleation radius reach the maximum value at 1457K. The sphericalshaped Al2O3 inclusion has been formed before TiN precipitate, and the smaller Al2O3 will be pushed to the solidification front to be captured by TiN. The preferentially formed Al2O3 could be acted as a core for the subsequent precipitated TiN, and then they will grow up gradually to form the final Al2O3TiN composite inclusion.

李 宁, 薛正良, 王 璐.

SWRH 92A帘线钢中异相形核TiN复合夹杂析出机制

[J]. 钢铁研究学报, 2022, 34(10): 1118

[本文引用: 1]

Tian Q, Li J, Wu X, et al.

Growth mechanism of MnS/Fe on TiN surface: First principle investigation

[J]. J. Alloys Compd., 2020, 844: 155831

[本文引用: 1]

Peng Z, Li L, Gao J, et al.

Precipitation strengthening of titanium microalloyed high-strength steel plates with isothermal treatment

[J]. Mater. Sci. Eng. A-Struct., 2016, 657: 413

Li N, Wang L, Li C Z, et al.

Precipitation thermodynamics and formation mechanism of Ti inclusions in hypereuteetoid tire cord steel

[J]. J. Iron Steel Res., 2022, 34(3): 200

[本文引用: 1]

李 宁, 王 璐, 李承志 .

过共析帘线钢中Ti夹杂的析出热力学与形成机制

[J]. 钢铁研究学报, 2022, 34(3): 200

[本文引用: 1]

Shang T, Wang W, Kang J, et al.

Precipitation behavior of TiN in solidification of 20CrMnTi under continuous casting conditions

[J]. J. Mater. Res. Technol., 2023, 24: 3608

[本文引用: 2]

Gui L, Long M, Zhang H, et al.

Study on the precipitation and coarsening of TiN inclusions in Ti-microalloyed steel by a modified coupling model

[J]. J. Mater. Res. Technol., 2020, 9(3): 5499

[本文引用: 2]

Matsuda S, Okumura N.

Effect of distribution of TiN precipitate particles on the austenite grain size of low carbon low alloy steels

[J]. Trans. Iron Steel Inst. Jpn., 1978, 18(4): 198

[本文引用: 1]

Narita K.

Physical chemistry of the groups IVa (Ti, Zr), Va (V, Nb, Ta) and the rare earth elements in steel

[J]. Trans. Iron Steel Inst. Jpn., 1975, 15(3): 145

[本文引用: 1]

Clyne T W, Kurz W.

Solute redistribution during solidification with rapid solid state diffusion

[J]. Metall. Mater. Trans. A, 1981, 12: 965

[本文引用: 1]

Sheng J, Wei J F, Meng Y H, et al.

Thermodynamical analysis of TiN precipitation in 21Cr ultra pure ferrite stainless steel

[J]. J. Lanzhou Univ. Technol., 2023, 49(5): 1

[本文引用: 1]

盛 捷, 魏佳富, 孟亚惠 .

21Cr超纯铁素体不锈钢TiN析出的热动力学研究

[J]. 兰州理工大学学报, 2023, 49(5): 1

[本文引用: 1]

Ma Z, Janke D.

Characteristics of oxide precipitation and growth during solidification of deoxidized steel

[J]. ISIJ Int., 1998, 38(1): 46

[本文引用: 1]

Fu J, Qiu W, Nie Q, et al.

Precipitation of TiN during solidification of AISI 439 stainless steel

[J]. J. Alloys Compd., 2017, 699: 938

[本文引用: 3]

Zhang Z F, Xing L D, Wang M, et al.

Analysis of precipitation behavior of TiN in low carbon micro alloyed steel

[J]. Contin. Cast., 2020, (5): 38

[本文引用: 1]

张泽峰, 邢立东, 王 敏 .

低碳微合金钢中TiN的析出行为分析

[J]. 连铸, 2020, (5): 38

DOI      [本文引用: 1]

低碳含钛微合金钢作为一种典型的高强度钢,近年来在工业上得到了广泛的应用。细小的TiN析出物可以细化奥氏体晶粒,提高钢的韧性,增强钢的良好成形性和可焊性,并降低工艺的生产成本。但是大量的或者大尺寸的TiN在铸坯中析出则会影响钢的裂纹敏感性。在整个炼钢过程中对样品进行了氧氮分析。结果表明钢包炉(LF)过程中氮含量异常增加。除了空气和钢水之间的反应外,炼钢的原料和辅助材料也可能是导致钢水中氮含量增加的原因,重点研究了铁钛合金的洁净度对TiN析出行为的影响。根据热力学计算结果,当氮质量分数从0.005%降低到0.002%时,TiN的沉淀温度可以降低到1 400 ℃,而TiN的析出量将大为降低。

Zhang X Y, Peng J, Peng J H.

Effect of nitrogen content on the thermodynamics of inclusion precipitation in rare-earth steel

[J] Chin. Rare Earth, 2022, 43(6): 1

[本文引用: 1]

张肖遥, 彭 军, 彭继华.

氮含量对稀土钢中夹杂析出热力学的探究

[J]. 稀土, 2022, 43(6): 1

[本文引用: 1]

Wang Y, Yang J, Bao Y.

Characteristics of BN precipitation and growth during solidification of BN free-machining steel

[J]. Metall. Mater. Trans. B, 2014, 45(6): 2269

[本文引用: 3]

Yong Q L. The Second Phase in Iron and Steel Materials [M]. Beijing: Metallurgical Industry Press, 2006: 26

[本文引用: 1]

雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 26

[本文引用: 1]

/