Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (10): 721-731    DOI: 10.11901/1005.3093.2023.499
  研究论文 本期目录 | 过刊浏览 |
稀土CeX20Co马氏体耐热钢蠕变性能的影响
向钰琳1,2, 杨仁贤3,4, 蔡欣3, 胡小强3,4(), 李殿中3,4()
1.中国科学技术大学稀土学院 赣州 341000
2.中国科学院赣江创新研究院 赣州 341000
3.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
4.中国科学技术大学材料科学与工程学院 沈阳 110016
Effect of Ce Addition on Creep Properties of X20Co Martensitic Heat-resistant Steel
XIANG Yulin1,2, YANG Renxian3,4, CAI Xin3, HU Xiaoqiang3,4(), LI Dianzhong3,4()
1.School of Rare Earths, University of Science and Technology of China, Ganzhou 341000, China
2.Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
3.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

向钰琳, 杨仁贤, 蔡欣, 胡小强, 李殿中. 稀土CeX20Co马氏体耐热钢蠕变性能的影响[J]. 材料研究学报, 2024, 38(10): 721-731.
Yulin XIANG, Renxian YANG, Xin CAI, Xiaoqiang HU, Dianzhong LI. Effect of Ce Addition on Creep Properties of X20Co Martensitic Heat-resistant Steel[J]. Chinese Journal of Materials Research, 2024, 38(10): 721-731.

全文: PDF(22575 KB)   HTML
摘要: 

采用扫描电子显微镜(SEM)、场发射透射电子显微镜(STEM)及能谱仪(EDS)等实验手段,系统研究了稀土元素Ce对X20Co马氏体耐热钢(X20Co)微观组织和蠕变行为的影响。结果表明,在680~720℃、100~200 MPa实验条件下,Ce元素添加提高了X20Co蠕变寿命,且随着Ce含量的提高,X20Co的蠕变寿命显著延长。在700℃/150 MPa时,添加质量分数为0.005%和0.012%Ce的X20Co其蠕变断裂时间分别为77.6和119.0 h,比不添加Ce的蠕变断裂时间(58.3 h)分别提高33%和104%以上。不添加Ce和添加质量分数为0.005%、0.012%Ce的X20Co,对应的蠕变应力指数分别为5.05和4.76、4.49,蠕变激活能分别为572.3、595.0、642.1 kJ/mol,蠕变门槛应力分别为58.3、87.8、82.5 MPa。三种不同Ce元素含量X20Co的蠕变机制均为位错攀移控制机制,Ce元素的添加,并未改变X20Co的蠕变机制。但是,Ce元素的添加,其明显提高了X20Co的蠕变激活能和门槛应力。蠕变前和断裂后微观组织对比分析表明,X20Co中存在三类析出相:沿晶界分布的富W大尺寸M6C和富Cr的较大尺寸M23C6,以及弥散分布在晶内的富V细小MC。Ce元素添加,能够减少大尺寸块状M6C的数量,有效改善X20Co的蠕变性能。

关键词 金属材料X20Co马氏体耐热钢稀土元素析出相蠕变性能微观组织    
Abstract

The X20Co martensitic heat-resistant steel (X20Co) has notable characteristics such as elevated high-temperature strength, as well as commendable resistance to oxidation and corrosion. The X20Co has been extensively employed as high-temperature working components of die-casting machines for Mg-alloys. Nevertheless, the prolonged exposure of die-casting machine components to high-temperature magnesium alloy liquid might result in deformation and fracture failure due to the occurrence of high-temperature creep. Therefore, it is imperative to enhance the high-temperature creep resistance of X20Co and prolong the operational lifespan of hot-work components in die-casting machinery. Rare earth (RE) elements, including Ce, are seen as potential means to improve the creep properties of X20Co. However, the effect of Ce on the microstructure and creep performance of X20Co have not been reported yet. In this study, the impact of Ce on the creep properties and microstructural characteristics of X20Co by applied stress within 100~200 MPa at 680~720oC is investigated by means of electronic creep testing machine, scanning electron microscope (SEM), transmission electron microscope (STEM), and energy-dispersive X-ray spectroscopy (EDS). The findings indicate that the incorporation of Ce can enhance the creep resistance of X20Co. Moreover, as a subsequence of the increase of Ce concentration, there is a remarkable and substantial improvement in the creep life of X20Co. As an illustration, by the testing condition of 700oC/150 MPa, the X20Co steel with 0.005% and 0.012%Ce (mass fraction) presents enhanced creep rupture time c.a. 33% and 103% respectively superior to that of the plain X20Co. The creep stress exponent, activation energy, and threshold stress of the plain X20Co are determined to be 5.05, 572.3 kJ/mol and 58.3 MPa, respectively. Correspondingly, those of the X20Co with 0.005% (mass fraction) Ce are 4.76, 595.0 kJ/mol and 87.8 MPa, respectively. Whereas, those of the X20Co with 0.012% (mass fraction) Ce are 4.49, 642.1 kJ/mol and 82.5 MPa, respectively. It is indicated that the creep processes of the three X20Co steels all follow the mechanism of dislocation climbing. It is a fact that the addition of Ce has not changed the creep mechanism but clearly raised the creep activation energy and threshold stress for X20Co steels. Furthermore, the microstructural evolution analysis compared before creep and after fracture reveals three distinct precipitates appear in X20Co. These precipitates are the large W-rich M6C phases and Cr-rich M23C6 phases on grain boundaries, as well as fine V-rich MC phases within grains. It is suggested that Ce reduces the number of large-size massive M6C phases, which significantly improves the creep properties of X20Co.

Key wordsmetallic materials    X20Co martensitic heat-resistant steel    rare earth    precipitates    creep properties    microstructure
收稿日期: 2023-10-11     
ZTFLH:  TG142.1  
基金资助:福建省STS计划配套项目(2020T3009);中国科学院青年创新促进会优秀项目(Y2021060);中国科学院率先计划王宽诚“产研人才”项目(2021001);沈阳市中青年科技创新人才支持计划项目(RC220474)
通讯作者: 胡小强,研究员,xqhu@imr.ac.cn,研究方向为稀土特殊钢研发与应用;
李殿中,研究员,dzli@imr.ac.cn,研究方向为先进钢铁材料研发与应用
Corresponding author: HU Xiaoqiang, Tel: (024)23971127, E-mail: xqhu@imr.ac.cn;
LI Dianzhong, Tel: (024)23971281, E-mail: dzli@imr.ac.cn
作者简介: 向钰琳,女,1997年生,硕士
SteelCSiMnCrCoMoWVNbCeFe
0Ce0.210.250.319.919.793.065.910.220.070Bal.
5Ce0.260.210.229.8810.063.065.930.220.070.005Bal.
12Ce0.220.250.319.999.953.095.890.230.070.012Bal.
表1  X20Co耐热钢的化学成分
图1  蠕变试样的几何尺寸示意图
图2  在700℃、不同应力条件下三种不同Ce元素含量X20Co的蠕变应变曲线和蠕变速率曲线
Temperature / oCStress / MPaRupture time / hMinimum creep rate / h-1Start time of the creep acceleration phase / h
0Ce5Ce12Ce0Ce5Ce12Ce0C5Ce12Ce
7001003794975789.13 × 10-51.56 × 10-41.03 × 10-4355440519
70015058.477.61194.63 × 10-34.32 × 10-36.81 × 10-351.470106
7002001317193.58 × 10-32.21 × 10-32.40 × 10-3121517
680200931071113.59 × 10-32.81 × 10-31.18 × 10-38599104
7202003.34.87.01.17 × 10-23.55 × 10-35.38 × 10-32.73.66.2
表2  X20Co的蠕变断裂时间、最小蠕变速率和加速蠕变阶段开始时间
图3  在200 MPa、不同温度条件下三种不同Ce元素含量X20Co的蠕变应变曲线和蠕变速率曲线
图4  X20Co蠕变前的初始微观组织
图5  蠕变前12Ce钢初始组织中析出相的STEM图像及其EDS元素面分布和SAED图
PhaseVCrFeCoMoWMnNb
Matrix0.911.765.511.63.75.90.7-
MC73.42.42.23.92.62.1-13.4
M6C1.311.439.46.115.925.7--
M23C61.872.48.214.32.50.70.1-
表3  12Ce钢蠕变前初始组织中析出相的成分
图6  0Ce钢蠕变前初始组织中析出相的STEM图像及其EDS元素面分布
图7  0Ce和12Ce钢在700℃、100 MPa条件下蠕变断裂后微观组织的SEM图像
图8  0Ce和12Ce钢在700℃、100 MPa条件下蠕变断裂后析出相的STEM图像及其EDS元素面分布
图9  0Ce和12Ce钢在700℃、100 MPa条件下蠕变断口的SEM形貌
图10  三种不同Ce元素含量X20Co的最小蠕变速率与蠕变应力、温度倒数的对数曲线
图11  X20Co在700℃蠕变时的最小蠕变速率的1/3次方随应力变化
1 Yan P, Liu Z D, Bao H S, et al. Effect of microstructural evolution on high-temperature strength of 9Cr-3W-3Co martensitic heat resistant steel under different aging conditions [J]. Mater. Sci. Eng., 2013, 588A: 22
2 Guo C B, Long S Y, Liao H M. Research of high chromium and cobalt refractory steel [J]. Mater. Rev., 2008, 22: 423
2 郭存宝, 龙思远, 廖慧敏. 高铬高钴耐热钢的研究 [J]. 材料导报, 2008, 22: 423
3 Huang X Q, Li P J, Liu S X, et al. The wear mechanism of the chamber and plunger materials of hot chamber die casting machine for magnesium alloy [J]. Foundry, 2001, 50: 187
3 黄相全, 李培杰, 刘树勋 等. 镁合金热室压铸机压射室材料摩擦磨损机制研究 [J]. 铸造, 2001, 50: 187
4 Qiu Q Z. Study on a high cobalt and chromium containing die steel for the magnesium alloy die casting [D]. Guangzhou: South China University of Technology, 2007: 10
4 邱庆忠. 一种高钴高铬压铸镁合金用模具钢的研究 [D]. 广州: 华南理工大学, 2007: 10
5 Xu Y W, Song S H, Wang J W. Effect of rare earth cerium on the creep properties of modified 9Cr-1Mo heat-resistant steel [J]. Mater. Lett., 2015, 161: 616
6 Yang R X, Ma S C, Cai X, et al. Influence of cerium on the creep properties of 316LN austenitic stainless steel [J]. Chin. J. Mater. Res., 2024, 38(1): 23
6 杨仁贤, 马澍成, 蔡 欣 等. Ce元素对316LN奥氏体不锈钢高温蠕变性能的影响 [J]. 材料研究学报, 2024, 38(1): 23
doi: 10.11901/1005.3093.2023.170
7 You S H, Huang Y D, Dieringa H, et al. Effects of Y additions on the microstructures and mechanical behaviours of as cast Mg-xY-0.5Zr alloys [J]. Adv. Eng. Mater., 2022, 24: 2101033
8 Yang Y W, Yang M L, He C X, et al. Rare earth improves strength and creep resistance of additively manufactured Zn implants [J]. Composites, 2021, 216B: 108882
9 Wang K, Yang R X, Cai X, et al. Effects of trace Ce on mechanical properties of a ferritic/martensitic heat resistant steel containing high Cr and Co [J]. Chin. J. Mater. Res., 2022, 36(4): 261
doi: 10.11901/1005.3093.2021.236
9 王 琨, 杨仁贤, 蔡 欣 等. 微量Ce元素对高铬高钴型马氏体耐热钢力学性能的影响 [J]. 材料研究学报, 2022, 36(4): 261
10 Institute of Metal Research, Chinese Academy of Sciences. A high chromium and cobalt containing rare-earth heat resistant steel and its preparation method [P]. China Pat, 202011269899.9, 2020
10 中国科学院金属研究所. 一种高Cr-高Co型稀土耐热钢合金材料及其制备方法 [P]. 中国专利, 202011269899.9, 2020)
11 Zhang J S. High Temperature Deformation and Fracture of Materials [M]. Beijing: Science Press, 2007
11 张俊善. 材料的高温变形与断裂 [M]. 北京: 科学出版社, 2007
12 Xu Y T, Nie Y H, Wang M J, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging [J]. Acta Mater., 2017, 131: 110
13 Sasikala G, Ray S K, Mannan S L, et al. Kinetics of transformation of delta ferrite during creep in a type 316(N) stainless steel weld metal [J]. Mater. Sci. Eng., 2003, 359A: 86
14 Wang Y Q, Lin S H, Li N, et al. Overview of σ phase influencing on mechanical properties of stainless steels [J]. J. Iron Steel Res., 2016, 28: 1
14 王永强, 林苏华, 李 娜 等. σ相析出对不锈钢力学性能的影响概述 [J]. 钢铁研究学报, 2016, 28: 1
doi: 10.13228/j.boyuan.issn1001- 0963.20150167
15 Li S Z, Eliniyaz Z, Dong X P, et al. Effect of stress on microstructural evolution and mechanical properties of 12Cr3W3Co steel during aging and short-term creep [J]. Mater. Sci. Eng., 2013, 580A: 51
16 Ma J, Liu F. Application of rare earth element in steel and its influence on steel properties [J]. Res. Iron Steel, 2009, 37(3): 54
16 马 杰, 刘 芳. 稀土元素在钢中的作用及对钢性能的影响 [J]. 钢铁研究, 2009, 37(3): 54
17 You Y, Yan J H, Yan M F, et al. La interactions with C and N in bcc Fe from first principles [J]. J. Alloys Compd., 2016, 688: 261
18 Zhang J S, Li P E, Jin J Z. Combined matrix/boundary precipitation strengthening in creep of Fe-15 Cr-25 Ni alloys [J]. Acta Metall. Mater., 1991, 39: 3063
19 Sherby O D, Klundt R H, Miller A K. Flow stress, subgrain size, and subgrain stability at elevated temperature [J]. Metall. Trans., 1977, 8A(6) : 843
20 Xie W C, Wu D, Lu S P. Effects of boron addition on the microstructure and creep properties of a Ni-Fe-based superalloy weld metal alloy [J]. Mater. Res. Express, 2022, 9(2): 026522
21 Kiyoshi M, Yoshihira O, Itsuo O. Microstructural changes and improvement of mechanical properties in an Fe-30Cr-5Al alloy with Ce additions [J]. J. Japan Inst. Met., 1988, 52(9): 878
21 水内潔, 大神田佳平, 大中逸雄. Fe-30Cr-5Al合金のCe添加に伴う組織変化と機械的性質の改善 [J]. 日本金属学会誌, 1988, 52(9): 878
22 Fedoseeva A, Nikitin I, Dudova N, et al. Nucleation of W-rich carbides and Laves phase in a Re-containing 10%Cr steel during creep at 650oC [J]. Mater. Charact., 2020, 169: 110651
23 Bai G H, Li J S, Hu R, et al. Effect of thermal exposure on the stability of carbides in Ni-Cr-W based superalloy [J]. Mater. Sci. Eng., 2011, 528A(6) : 2339
24 Voice W E, Faulkner R G. The discontinuous precipitation of M23C6 in Nimonic 80A [J]. J. Mater. Sci., 1987, 22: 4221
25 Garcia J M, Monteiro A C A, de Moraes Barcelos Casanova A, et al. Microstructural analysis of phase precipitation during high temperature creep in AISI 310 stainless steel [J]. J. Mater. Res. Technol., 2023, 23: 5953
[1] 岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
[2] 汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
[3] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[4] 尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
[5] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[6] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[7] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[8] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[9] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[10] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[11] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[12] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[13] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
[14] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[15] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.