|
|
稀土Ce对X20Co马氏体耐热钢蠕变性能的影响 |
向钰琳1,2, 杨仁贤3,4, 蔡欣3, 胡小强3,4( ), 李殿中3,4( ) |
1.中国科学技术大学稀土学院 赣州 341000 2.中国科学院赣江创新研究院 赣州 341000 3.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 4.中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
Effect of Ce Addition on Creep Properties of X20Co Martensitic Heat-resistant Steel |
XIANG Yulin1,2, YANG Renxian3,4, CAI Xin3, HU Xiaoqiang3,4( ), LI Dianzhong3,4( ) |
1.School of Rare Earths, University of Science and Technology of China, Ganzhou 341000, China 2.Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China 3.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 4.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
向钰琳, 杨仁贤, 蔡欣, 胡小强, 李殿中. 稀土Ce对X20Co马氏体耐热钢蠕变性能的影响[J]. 材料研究学报, 2024, 38(10): 721-731.
Yulin XIANG,
Renxian YANG,
Xin CAI,
Xiaoqiang HU,
Dianzhong LI.
Effect of Ce Addition on Creep Properties of X20Co Martensitic Heat-resistant Steel[J]. Chinese Journal of Materials Research, 2024, 38(10): 721-731.
1 |
Yan P, Liu Z D, Bao H S, et al. Effect of microstructural evolution on high-temperature strength of 9Cr-3W-3Co martensitic heat resistant steel under different aging conditions [J]. Mater. Sci. Eng., 2013, 588A: 22
|
2 |
Guo C B, Long S Y, Liao H M. Research of high chromium and cobalt refractory steel [J]. Mater. Rev., 2008, 22: 423
|
2 |
郭存宝, 龙思远, 廖慧敏. 高铬高钴耐热钢的研究 [J]. 材料导报, 2008, 22: 423
|
3 |
Huang X Q, Li P J, Liu S X, et al. The wear mechanism of the chamber and plunger materials of hot chamber die casting machine for magnesium alloy [J]. Foundry, 2001, 50: 187
|
3 |
黄相全, 李培杰, 刘树勋 等. 镁合金热室压铸机压射室材料摩擦磨损机制研究 [J]. 铸造, 2001, 50: 187
|
4 |
Qiu Q Z. Study on a high cobalt and chromium containing die steel for the magnesium alloy die casting [D]. Guangzhou: South China University of Technology, 2007: 10
|
4 |
邱庆忠. 一种高钴高铬压铸镁合金用模具钢的研究 [D]. 广州: 华南理工大学, 2007: 10
|
5 |
Xu Y W, Song S H, Wang J W. Effect of rare earth cerium on the creep properties of modified 9Cr-1Mo heat-resistant steel [J]. Mater. Lett., 2015, 161: 616
|
6 |
Yang R X, Ma S C, Cai X, et al. Influence of cerium on the creep properties of 316LN austenitic stainless steel [J]. Chin. J. Mater. Res., 2024, 38(1): 23
|
6 |
杨仁贤, 马澍成, 蔡 欣 等. Ce元素对316LN奥氏体不锈钢高温蠕变性能的影响 [J]. 材料研究学报, 2024, 38(1): 23
doi: 10.11901/1005.3093.2023.170
|
7 |
You S H, Huang Y D, Dieringa H, et al. Effects of Y additions on the microstructures and mechanical behaviours of as cast Mg-xY-0.5Zr alloys [J]. Adv. Eng. Mater., 2022, 24: 2101033
|
8 |
Yang Y W, Yang M L, He C X, et al. Rare earth improves strength and creep resistance of additively manufactured Zn implants [J]. Composites, 2021, 216B: 108882
|
9 |
Wang K, Yang R X, Cai X, et al. Effects of trace Ce on mechanical properties of a ferritic/martensitic heat resistant steel containing high Cr and Co [J]. Chin. J. Mater. Res., 2022, 36(4): 261
doi: 10.11901/1005.3093.2021.236
|
9 |
王 琨, 杨仁贤, 蔡 欣 等. 微量Ce元素对高铬高钴型马氏体耐热钢力学性能的影响 [J]. 材料研究学报, 2022, 36(4): 261
|
10 |
Institute of Metal Research, Chinese Academy of Sciences. A high chromium and cobalt containing rare-earth heat resistant steel and its preparation method [P]. China Pat, 202011269899.9, 2020
|
10 |
中国科学院金属研究所. 一种高Cr-高Co型稀土耐热钢合金材料及其制备方法 [P]. 中国专利, 202011269899.9, 2020)
|
11 |
Zhang J S. High Temperature Deformation and Fracture of Materials [M]. Beijing: Science Press, 2007
|
11 |
张俊善. 材料的高温变形与断裂 [M]. 北京: 科学出版社, 2007
|
12 |
Xu Y T, Nie Y H, Wang M J, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging [J]. Acta Mater., 2017, 131: 110
|
13 |
Sasikala G, Ray S K, Mannan S L, et al. Kinetics of transformation of delta ferrite during creep in a type 316(N) stainless steel weld metal [J]. Mater. Sci. Eng., 2003, 359A: 86
|
14 |
Wang Y Q, Lin S H, Li N, et al. Overview of σ phase influencing on mechanical properties of stainless steels [J]. J. Iron Steel Res., 2016, 28: 1
|
14 |
王永强, 林苏华, 李 娜 等. σ相析出对不锈钢力学性能的影响概述 [J]. 钢铁研究学报, 2016, 28: 1
doi: 10.13228/j.boyuan.issn1001- 0963.20150167
|
15 |
Li S Z, Eliniyaz Z, Dong X P, et al. Effect of stress on microstructural evolution and mechanical properties of 12Cr3W3Co steel during aging and short-term creep [J]. Mater. Sci. Eng., 2013, 580A: 51
|
16 |
Ma J, Liu F. Application of rare earth element in steel and its influence on steel properties [J]. Res. Iron Steel, 2009, 37(3): 54
|
16 |
马 杰, 刘 芳. 稀土元素在钢中的作用及对钢性能的影响 [J]. 钢铁研究, 2009, 37(3): 54
|
17 |
You Y, Yan J H, Yan M F, et al. La interactions with C and N in bcc Fe from first principles [J]. J. Alloys Compd., 2016, 688: 261
|
18 |
Zhang J S, Li P E, Jin J Z. Combined matrix/boundary precipitation strengthening in creep of Fe-15 Cr-25 Ni alloys [J]. Acta Metall. Mater., 1991, 39: 3063
|
19 |
Sherby O D, Klundt R H, Miller A K. Flow stress, subgrain size, and subgrain stability at elevated temperature [J]. Metall. Trans., 1977, 8A(6) : 843
|
20 |
Xie W C, Wu D, Lu S P. Effects of boron addition on the microstructure and creep properties of a Ni-Fe-based superalloy weld metal alloy [J]. Mater. Res. Express, 2022, 9(2): 026522
|
21 |
Kiyoshi M, Yoshihira O, Itsuo O. Microstructural changes and improvement of mechanical properties in an Fe-30Cr-5Al alloy with Ce additions [J]. J. Japan Inst. Met., 1988, 52(9): 878
|
21 |
水内潔, 大神田佳平, 大中逸雄. Fe-30Cr-5Al合金のCe添加に伴う組織変化と機械的性質の改善 [J]. 日本金属学会誌, 1988, 52(9): 878
|
22 |
Fedoseeva A, Nikitin I, Dudova N, et al. Nucleation of W-rich carbides and Laves phase in a Re-containing 10%Cr steel during creep at 650oC [J]. Mater. Charact., 2020, 169: 110651
|
23 |
Bai G H, Li J S, Hu R, et al. Effect of thermal exposure on the stability of carbides in Ni-Cr-W based superalloy [J]. Mater. Sci. Eng., 2011, 528A(6) : 2339
|
24 |
Voice W E, Faulkner R G. The discontinuous precipitation of M23C6 in Nimonic 80A [J]. J. Mater. Sci., 1987, 22: 4221
|
25 |
Garcia J M, Monteiro A C A, de Moraes Barcelos Casanova A, et al. Microstructural analysis of phase precipitation during high temperature creep in AISI 310 stainless steel [J]. J. Mater. Res. Technol., 2023, 23: 5953
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|