Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (4): 269-276    DOI: 10.11901/1005.3093.2014.789
  本期目录 | 过刊浏览 |
纳米级碳化物及小角界面密度对Fe-C-Mo-M(M=Nb、V或Ti)系钢耐火性的影响
张正延1,2,孙新军1,李昭东1,王小江3,雍岐龙1(),王国栋2
1. 钢铁研究总院工程用钢所 北京 100081
2. 东北大学轧制技术与连轧自动化国家重点实验室 沈阳 110004
3. 昆明理工大学材料科学与工程学院 昆明 650093
Effect of Nanometer-Sized Carbides and Grain Boundary Density on Performance of Fe-C-Mo-M(M=Nb, V or Ti) Fire Resistant Steels
Zhengyan ZHANG1,2,Xinjun SUN1,Zhaodong LI1,Xiaojiang WANG3,Qilong YONG1,**(),Guodong WANG2
1. Department of Structurale Steels, Central Iron and Steel Research Institute, Beijing 100081, China
2. State key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110004, China.
3. Department of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
引用本文:

张正延,孙新军,李昭东,王小江,雍岐龙,王国栋. 纳米级碳化物及小角界面密度对Fe-C-Mo-M(M=Nb、V或Ti)系钢耐火性的影响[J]. 材料研究学报, 2015, 29(4): 269-276.
Zhengyan ZHANG, Xinjun SUN, Zhaodong LI, Xiaojiang WANG, Qilong YONG, Guodong WANG. Effect of Nanometer-Sized Carbides and Grain Boundary Density on Performance of Fe-C-Mo-M(M=Nb, V or Ti) Fire Resistant Steels[J]. Chinese Journal of Materials Research, 2015, 29(4): 269-276.

全文: PDF(5700 KB)   HTML
摘要: 

通过高Nb、V或Ti(~0.1%), 低Mo(≤0.2%)微合金化设计, 在经TMCP工艺后用恒载荷拉伸实验测定了Fe-C-M-Mo(M=Nb、V或Ti)系合金钢的失效温度。用EBSD分析了TMCP后样品中的界面密度, 用TEM观测了恒载拉伸实验后样品中的纳米析出相。 结果表明: 在Fe-C-V/Nb钢中添加约0.2% Mo使其在280 MPa恒载荷拉伸升温过程中的失效温度提高约40℃。小角度界面为MC型析出相形核析出提供了有利位置, 加速了MC相的析出, 在升温过程中细小弥散的MC相在小角度界面形核析出起到了良好的高温沉淀强化作用, 提高了耐火钢的失效温度。含Mo的Ti-Mo钢具有较高的小角度界面密度, 导致其中MC型析出相析出较快, 因此具有最高的失效温度, Nb-Mo钢次之, V-Mo钢因小角度界面密度最小使其在高温下MC相析出的动力学减缓, 因此失效温度最低。

关键词 金属材料智能型耐火钢失效温度沉淀强化小角度界面密度纳米级碳化物    
Abstract

Fe-C-Mo-M steels (where M is Nb, V or Ti, ~0.1%, and Mo ≤0.2% ) were produced by thermal mechanical control processing (TMCP), and then their performance was characterized in terms of failure temperature by means of constant load tensile test while heating from ambient temperature up to 800oC with a heating rate 28 oC/min. The boundary misorientation of the steels after TMCP was examined by electron back scattered diffraction (EBSD), and the precipitates of MC type carbides were characterized by transmission electron microscopy (TEM). The results show that the addition of 0.2% Mo in Fe-C-Nab/V steels increases the failure temperature of steels by 40℃. It is believed that the low-angle grain boundary provided the favorable nucleation site for MC type carbides, which in turn will accelerate the kinetics of precipitation process. The fine and dispersed precipitates of MC type carbides induce significant precipitation strengthening for the steels during the constant load tensile process, thus resulting in higher failure temperature. Among the tested steels, the failure temperature of Ti-Mo steel is the highest due to its highest low-angle grain boundary density which results in the fast precipitation of MC type carbides. The failure temperature of Nb-Mo steel comes the second and that of the V-Mo steels is the lowest because of its lowest low angle grain boundary density leading to the lowest density of precipitated MC type carbides.

Key wordsmetallic material    intelligent fire resistant steel    failure temperature    precipitation strengthening    low-angle grain boundary density    nanometer-sized carbide
收稿日期: 2014-12-30     
基金资助:* 国家重点基础研究发展计划2010CB630805和国家自然科学基金51201036资助项目。
Steels C Mn P≤ S≤ Al Mo Ti Nb V B
V 0.035 1.37 0.0037 0.0058 0.008 0.013 0.140 0.0018
V-Mo 0.037 1.39 0.0036 0.0056 0.012 0.190 0.014 0.140 0.0009
Nb 0.036 1.35 0.0034 0.0057 0.012 0.010 0.100 0.0012
Nb-Mo 0.042 1.38 0.004 0.006 0.014 0.190 0.015 0.100 0.0010
Ti-Mo 0.034 1.53 0.0074 0.005 0.036 0.198 0.110 0.013 0.0015
Low- Nb-Mo 0.036 1.56 0.007 0.0049 0.054 0.196 0.033 0.041 0.0012
表1  实验钢的化学成分
图1  不同实验钢的应变-温度曲线
Steels Microstructure Low grain boundary density/μm-1 Volume fraction of MC phase at 600℃/% Failure temperature/℃
V GB+QF+ P 0.53 0.167 647
V-Mo GB+ QF 0.82 0.372 692
Nb GB+QF+ P 0.68 0.115 666
Nb-Mo GB+ QF 0.87 0.210 706
Ti-Mo GB 1.23 0.294 714
Low-Nb-Mo GB 1.15 0.086 675
表2  不同合金成分钢的微观组织、MC相析出量(600℃)和失效温度
图2  不同实验钢轧态的SEM像
图3  不同实验钢轧态的EBSD界面分布图
图4  不同实验钢的界面密度分布图
图5  Nb-Mo、 V-Mo和Ti-Mo钢轧态和经恒载荷拉伸试样中析出相的TEM像
图6  经恒载荷拉伸后Nb-Mo、V-Mo、Ti-Mo钢中析出相数密度统计
1 YU Qingbo, LIU Xianghua, ZHAO Xianpin, Microstrctural Morphology and Analysis of TMCP Steels (Beijing, Science Press, 2010)p. 126
1 (于庆波, 刘相华, 赵贤平, 控轧控冷钢的显微组织形貌及分析, (北京, 科学出版社, 2010)p. 126)
2 WAN Weiguo, WU Jiecai, Journal of building materials, 2, 2(2006)
2 (完卫国, 吴结才, 耐火钢的开发与应用综述, 建筑材料学报, 2, 2(2006))
3 W. Sha, B. R. Kirby, F. S. Kelly,The behavior of structural steels at elevated temperatures and the design of fire resistant steels, Mater. Trans., 42(9), 1913(2001)
4 PU Yumei, XI Tie, Development and use of high performance building steel produced by Ma Steel, Steel Constructure, 22(91), 70(2007)
4 (蒲玉梅, 奚铁, 马钢建筑用高效结构钢材的开发应用, 钢结构, 22(91), 70(2007))
5 ZHANG Chengwei, Lv Zuorong, in 2009 SCM Annual Meeting Proceedings, The design and exploition to fire-resistant steel, Edited by the Chinese Society for Metals(Beijing, Metallurgical Industry Press, 2009)p. 348
5 (张成伟, 吕作荣, 2009年第七届中国钢铁年会论文集, 本钢耐火钢的开发设计, 中国金属学会编, (北京, 冶金工业出版社, 2009)p. 348)
6 Wuhan Iron & Steel (Group) Corp.,Production method of high-performance fire resistant and weathering steel, China patent: CN1132958C(2003)
6 (武汉钢铁集团公司, 高性能耐火耐侯钢及其生产方法, 中国专利: CN1132958C(2003))
7 K. P. Bimal,Microstructures and properties of low-alloy fire resistant steel, Bull. Mater. Sci., 29(1), 59(2006)
8 R. C. Wan, F. S, L. T. Zhang, A. D. Shan, Development and Study of High strength Low Mo Fire resistent Steel. Mater. Des., 36, 227(2012)
9 PAN Xiaoqiang, ZUO Rulin, DANG Ying, LI Cong, Study on microstructure of fire resistant steels containing molybdenum and vanadium, Physics Examination and Testing, 25(5), 9(2007)
9 (潘小强, 左汝林, 党 莹, 李 聪, Mo-V 耐火钢显微组织分析研究, 物理测试, 25(5), 9(2007))
10 J. G. Speer, R. W. Regier, D. K. Matlock, S. G. Jansto, Thermomechanical processing effects on the elevated temperature behavior of niobium bearing fire-resistant steel, Materials Science and Technology-Association for Iron and Steel Technology, 6,(3711)2007
11 E. G. Dere, H. Sharma, R. H. Petrov, J. Sietsma, S. E. Offerman,Effect of niobium and grain boundary density on the fire resistence of Fe-C-Mn steel, Scripta Mater., 69, 651(2013)
12 S. C. Hong, S. H. Lim, H. S. Hong, K. J. Lee, D. H. Shin, K. S. Lee,Effects of Nb on strain indued ferrite transformation in C-Mn steel, Mater. Sci. Eng. A, 355, 241(2003)
13 Y. B. Cao, F. R. Xiao, G. Y. Qiao, C. J. Huang, X. B. Zhang,Strain-induced precipitation and softening behaviors of high Nb microalloyed steels, Mater. Sci. Eng. A, 552, 502(2012)
14 WANG Zhenqiang,The precipitation behavior in Ti micro-alloyed steel and the effects of Mn and Mo, Doctoral dissertation, Tsinghua University(2013)
14 (王振强,Ti微合金钢中的析出行为与合金元素Mn和Mo的影响, 博士学位论文, 清华大学(2013))
15 YONG Qilong, MA Mingtu, WU Baorong, Microalloyed Steels: Physical and Mechanical Metallurgy, (Beijing, China Machine Press, 1989)p.89
15 (雍岐龙, 马鸣图, 吴宝榕, 微合金钢, 物理和力学冶金, (北京, 机械工业出版社, 1989)p. 89)
16 WENG Yuqing, Ultrafine Grained Ssteel, (Beijing, Metallurgical Industry Press, 2003)p.814)
16 (翁宇庆, 超细晶钢, (北京, 冶金工业出版社, 2003)p. 814)
17 PAN JinSheng, TONG Jianmin, TIAN Minbo, Fundamentals of Material Science, (Beijing, Tsinghua University Press, 2011)p. 660
17 (潘金生, 仝健民, 田民波, 材料科学基础, (北京, 清华大学出版社, 2011)p.660)
18 YONG Q L, Secondary Phase in Steels, (Beijing, Metallurgical Industry Press, 2006)p.361
18 (雍岐龙, 钢铁材料中的第二相, (北京, 冶金工业出版社, 2006)p. 361)
19 DONG Han, Advanced Steel Materials, (Beijing, Science Press, 2007)p.72
19 (董瀚, 先进钢铁材料, (北京, 科学出版社, 2007)p. 72)
20 GUO Jianting, Materials Science and Engineering for Superalloys, (Beijing, Science Press, 2008) p. 81
20 (郭建亭, 高温合金材料学, (北京, 科学出版社, 2008)p. 81)
21 W. B. Lee, S. G. Hong, C. G. Park, K. H. kim, S. H. Park,Influence of Mo on precipitation hardening in hot rolled HSLA steels containing Nb, Scripta Mater., 43(4), 319(2000)
22 ZHANG Zhengyan, LI Zhaodong, YONG Qilong, SUN Xinjun, WANG Zhenqiang, WANG Guodong, Precipitation behavior of carbide during heating process in Nb and Nb-Mo micro-alloyed steels, Acta Metall. Sin., 51(3), 315(2015)
22 (张正延, 李昭东, 雍岐龙, 孙新军, 王振强, 王国栋, 升温过程中Nb和Nb-Mo微合金化钢中碳化物的析出行为研究, 金属学报, 51(3), 315(2015))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.