Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (6): 429-433    DOI: 10.11901/1005.3093.2014.674
  本期目录 | 过刊浏览 |
(Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ混合导体材料的电子-离子阻抗特性*
单科1(),郭兴敏2
1. 红河学院理学院 新能源材料重点实验室 蒙自 6611992.
2.北京科技大学钢铁冶金新技术国家重点实验室 北京 100083
Electronic-ionic Impedance Characteristics of (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ Mixed Conductor
Ke SHAN1,**(),Xingmin GUO2
1. Laboratory of New Materials for Power Sources, College of Science, Honghe University, Mengzi 661199, China
2. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing,Beijing 100083, China
引用本文:

单科,郭兴敏. (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ混合导体材料的电子-离子阻抗特性*[J]. 材料研究学报, 2015, 29(6): 429-433.
Ke SHAN, Xingmin GUO. Electronic-ionic Impedance Characteristics of (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ Mixed Conductor[J]. Chinese Journal of Materials Research, 2015, 29(6): 429-433.

全文: PDF(1752 KB)   HTML
摘要: 

用溶胶-凝胶法制备了(Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ(x = 0.05, 0.07, 0.10)混合导体材料, 用X射线衍射(XRD)分析该材料的物相, 用交流阻抗法和电子阻塞电极法分别测定材料的总电导率与离子电导率, 研究了A位缺位对(Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ混合导体材料的结构、电性能及阻抗行为的影响。结果表明, 所有试样都具有单一立方相钙钛矿结构; 在测试温度范围内(Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ (x = 0.05, 0.07, 0.10)的总电导率随着温度的升高先增大后减小, 表现为小极化子导电机理; 随着A位缺位量的增加, 总电导率降低。(Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ(x = 0.05, 0.07, 0.10)在800℃的总电导率为0.011-0.26 Scm-1。(Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ的总电导率阻抗谱只显示了高频斜线部分, 说明材料主要以电子电导为主; 离子传导的弛豫时间逐渐随着A位缺位量的增加而增大, 说明A位缺位不利于离子在晶界中的传导。

关键词 无机非金属材料, (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ, 电子阻抗, 离子阻抗, 弛豫    
Abstract

A single phase A-site-deficient perovskite (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ (x=0.05, 0.07, 0.10) was synthesized at 1350 oC in air by sol-gel method. The effect of A-site deficiency in (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ on its phase structure, electrical and ionic conductivity and impedance was investigated. The partial oxygen ionic conductivity decreases with the increasing A-site deficiency, which may be attributed to the tendency for oxygen vacancy ordering. The n-type electronic conductivity in air increases with the increasing A-site deficiency, which may be attributed to the decrease of and due to the possible ionization reaction of ferric iron. The total electrical conductivity of (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ (x=0.05, 0.07, 0.10) varies from 0.11 Scm-1 to 0.26 Scm-1 at 800oC. Only one oblique line in high frequency range for each temperature is presented, demonstrating that the electronic conductivity should mainly contribute to the total electrical conductivity. The increase of A-site deficiency is unfavorable for ion conductivity due to a subsequently rising relaxation time.

Key wordsinorganic non-metallic materials, (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ    , electrical impedance, ionic impedance, relaxation
收稿日期: 2014-11-13     
基金资助:*国家自然科学基金51374017资助项目。
作者简介: 单科
图1  (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ在1350℃烧结5 h的XRD图谱
图2  (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ (x= 0.05, 0.07, 0.10)容差因子随x值变化曲线
图3  (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ在1350℃烧结5 h后的断面扫描电镜照片
图4  (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ复阻抗谱图
图5  (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ总电导率随温度变化曲线
图6  (Y0.08Sr0.92)0.90Ti0.6Fe0.4O3-δ在不同温度下离子传导的复阻抗谱图
图7  Y0.08Sr0.92Ti1-xFexO3-δ(a) x= 0.05, (b) x= 0.07 与 (c) x=0.10频率的关系
T fmax x x=0.05 x=0.07 x=0.10
650℃ 0.55Hz 0.118 Hz 0.066 Hz
700℃ 2.55 Hz 1.738 Hz 1.434 Hz
750℃ 5.49 Hz 11.91 Hz 11.91 Hz
800℃ 11.91 Hz 21.23 Hz 21.23 Hz
t ~13.4–290 ms ~7.5–1349 ms ~7.5–2413 ms
表1  Y0.08Sr0.92Ti1-xFexO3-δ的fmax和
1 Gong M., Liu X., Termbly J.,Sulfur-tolerant anode materials for solid oxide fuel cell application, Journal of Power Sources, 168(2), 289(2007)
2 Blennow P., Hagen A., Hansen K. K.,Defect and electrical transport properties of Nb-doped SrTiO3, Solid State Ionics, 179(35), 2047(2008)
3 Canales-Vazquez J., Tao S. W., Irvine J. T. S.,Electrical properties in La2Sr4Ti6O19?δ: a potential anode for high temperature fuel cells, Solid State Ionics, 159(1), 159(2003)
4 Boukamp B. A.,The amazing perovskite anode, Nature Materials, 2(5), 294(2003)
5 Li X., Zhao H., Xu N.,Electrical conduction behavior of La, Co co-doped SrTiO3 perovskite as anode material for solid oxide fuel cells, International Journal of Hydrogen Energy, 34(15), 6407(2009)
6 Li X., Zhao H., Gao F.,La and Sc co-doped SrTiO3 as novel anode materials for solid oxide fuel cells, Electrochemistry Communication, 10(10), 1567(2008)
7 Litzelman S. J.,Rothschild A.,Tuller . H. L , The electrical properties and stability of SrTi0.65Fe0.35O3-δ thin films for auto- motive oxygen sensor applications, Sensors and Actuators B, 108(1/2), 231(2005)
8 Kharton V. V.,Kovalevsky A. V., Viskup A. P., Transport properties and thermal expansion of Sr0.97Ti1-xFexO3-δ (x=0.2-0.8), Journal of Solid State Chemistry, 156(2), 437(2001)
9 Hui S. Q., Petric A.,Electrical conductivity of yttrium-doped SrTiO3: influence of transition metal additives, Materials Research Bulletin, 37(7), 1215(2002)
10 Yoon J. S., Yoon M. Y., Kwak C.,Y0.08Sr0.92FexTi1-xO3-δperovskite for solid oxide fuel cell anodes, Materials Science and Engineering B, 177(2), 151(2011)
11 Fagg D. P., Kharton V. V., Frade J. R.,Stability and mixed ionic–electronic conductivity of (Sr, La)(Ti, Fe)O3-δ perovskites, Solid State Ionics, 156(1/2), 45(2003)
12 Hui S., Petric A.,Evaluation of yttrium- doped SrTiO3 as an anode for solid oxide fuel cells, Journal of European Ceramic Society, 22(9/10), 1673(2002)
13 Fu Q. X., Mi S. B., Wessel E.,Influence of sintering conditions on microstructure and electrical conductivity of yttrium-substituted SrTiO3, Journal of European Ceramic Society, 28(4), 811(2008)
14 Kurokawa H., Yang L., Jacobson C. P.,Y-doped SrTiO3 based sulfur tolerant anode for solid oxide fuel cells, Journal of Power Sources, 164(2), 510(2007)
15 Li X., Zhao H., Gao F.,Synthesis and properties of Y-doped SrTiO3 as anode material for SOFC, Journal of Power Sources, 166(1), 47(2007)
16 SHAN Ke,GUO Xingmin, Synthesis and electrical conductivity of Y0.06Sr0.94Ti1-xFexO3-δ as a mixed conductor, Materials Science and Engineering of Powder Metallurgy, 18(6), 857(2013)
16 (单科, 郭兴敏, 溶胶-凝胶法制备Y0.06Sr0.94Ti1-xFexO3-δ混合导体材料的电性能, 粉末冶金材料科学与工程, 18(6), 857(2013))
17 Shan K., Guo X. M.,Synthesis and electrical properties of mixed-conducting YxSr1-xTi0.7Fe0.3O3-δ, Materials Letters, 121, 251(2014)
18 Zhao H. L., Cheng Y. F., Xu N. S.,Oxygen permeability of A-site nonstoichiometric BaxCo0.7Fe0.2Nb0.1O3-δ perovskite oxides, Solid State Ionics, 181(5-7), 354(2010)
19 Liu M. F., Zhao L., Dong D. H.,High sintering ability and electrical conductivity of Zn doped La(Ca)CrO3 based interconnect ceramics for SOFCs, Journal of Power Sources, 177(2), 451(2008)
No related articles found!