Please wait a minute...
材料研究学报  2002, Vol. 16 Issue (6): 623-628    
  论文 本期目录 | 过刊浏览 |
NiAl超塑性变形的正电子寿命研究
杜兴蒿1;2; 郭建亭2 ; 周彼德1 ; 熊良钺2
1. 哈尔滨工业大学 2. 中国科学院金属研究所
引用本文:

杜兴蒿; 郭建亭; 周彼德; 熊良钺 . NiAl超塑性变形的正电子寿命研究[J]. 材料研究学报, 2002, 16(6): 623-628.

全文: PDF(562 KB)  
摘要: 研究了B2 型多晶NiAl的晶界结构对缺陷态正电子寿命的影响,并结合正电子谱探讨了热挤压及超塑性变形过程后的晶界结构. 热挤压后的NiAl合金具有完全的再结晶组织, 而超塑性变形过程中的动态回复和再结晶是一种不完全再结晶过程, 所得到晶界仍属于亚晶界或小角度晶界范畴, 再结晶晶界在超塑性变形过程中不发生滑动.
关键词 NiAl超塑性正电子寿命晶界结构    
Key words
收稿日期: 1900-01-01     
1 S.Yajima,J.hayashi,K.Okamura,Pyrolysis of a Poly- borodiphenylsiloxane,Nature,266,521(1977)
2 CHENG Xiangzheng,XIE Zhengfang,SONG Yong- cai,XIAO Jiayu,Infulence of reaction temperature on the properties of polycarbosilane synthesized from poly- dimethylsilane under high pressure,Acta Polymerica Sinica,851(2005) (程祥珍,谢征芳,宋永才,肖加余,反应温度对聚二甲基硅烷高压合成聚碳硅烷性能的影响,高分子学报,851(2005))
3 H.Ichikawa,F.Machino,S.Mitsuno,T.Ishikawa, K.Okamura,Y.Hasigawa,Synthesis of continuous silicon carbide fibre.Part 5.Factors affecting stability of polycarbosilane to oxidation,Journal of Materials Science,21,4352(1986)
4 T.Ishikawa,Recent developments of the SiC fiber Nicalon and its composites,including properties of the SiC fiber Hi-Nicalon for ultra-high temperature,Composites Sci- ence and Technology,51,135(1994)
5 M.Takeda,J.I.Sakamoto,Y.Imai,H.Ichikawa,Thermal stability of the low-oxygen-content silicon carbide fiber, Hi-NicalonTM,Composites Science and Technology,59, 813(1999)
6 M.Takeda,Y.Imai,H.Ichikawa,N.Kasai,T.scguchi, K.Okamura,Thermal stability of SiC fiber prepared by an irradiation-curing process,Composites Science and Tech- nology,59,793(1999)
7 K.Suzuki,K.Kumagama,T.Kamiyama,M.Shibuya,Char- acterization of the medium-range structure of Si-Al-C-O, Si-Zr-C-O and Si-Al-C Tyranno fibers by small angle X- ray scattering,Journal of Materials Science,37,949(2002)
8 E.Vanswijgenhoven,K.Lambrinou,M.Wevers, O.V.D.Biest,Comparative study of the surface roughness of Nicalon and Tyranno silicon carbide fibres,Composites Part A,29A,1417(1998)
9 W.Yang,H.Araki,A.Kohyarna,Q.Hul,Growing SiC nanowires on Tyranno-SA sic fibers,Journal of the Amer- ican Ceramic Society,87,733(2004)
10 S.Dong,Y.Katoh,A.Kohyama,Processing optimization and mechanical evaluation of hot pressed 2D Tyranno- SA/SiC composites,Journal of the European Ceramic So- ciety,23,1223(2003)
11 T.Ishikawa,Y.Kohtoku,K.Kumagaws,T.Yamamura, T.Nagasawa,High-strength Alkali-resistant sinteredSiC fi- bre stable to 2,200 C,Nature,391,773(1998)
12 K.Morishitaw,S.Ochial,H.Okuda,T.Inshikawa,M.Sato, T.Inoue,Fracture toughness of a crystalline silicon car- bide fiber(Tyranno-SA3),Journal of American Ceramic Society,89,2571-2576(2006)
13 F.Can,X.D.Li,P.Peng,C.X.Feng,J.Wang,D.P.Kim, Structural evolution and associated properties on conver- sion from Si-C-O-Al ceramic fibers to Si-C-Al fibers by sintering,Journal of Material Chemistry,12,606(2002)
14 D.F.Zhao,X.D.Li,C.M.Zheng,T.J.Hu,Production mech- anism of polyaluminocarbosilane using aluminum acety- lacetonate with polysilacarbosilane,Journal of University of Science and Technology Beijing,29,130(2007)
15 S.Yajima,Y.Hasegawa,J.Hayashi,M.Iimura,Synthesis of continuous silicon carbide fiber with high tensile strength and high Yong's modulus part 1 Synthesis of polycarbosi- lane as precursor,Journal of Materials Science,13,2569 (1978)
16 H.Q.Ly,R.Taylor,R.J.Day,F.Heatley,Conversion of poly- carbosilane(PCS) to SiC-based ceramic Part 1.Charac- terisation of PCS and Curing Products,Journal of Mate- rials science,36,4037(2001)
17 Y.Hasegawa,K.Okamura,Synthesis of continuous silicon carbide fibre part 3 Pyrolysis process of polycarbosilane and structure of the products,Journal of Materials sci- ence,18,3633(1983)
18 ZHENG Chunman,ZHU Bin,LI Xiaodong,WANG Yifei, Study on thermal-curing of polycarbosilane fibers,Acta Polymerica Sinica,246(2004) (郑春满,朱冰,李效东,王亦菲,聚碳硅烷纤维的热交联研究,高分子学报,246(2004))
19 M.Narisawa,K.Shimoda,M.Nishioka,.Iseki, H.Mabuchi,K.Okamura,T.Dohmaru.Silicon carbide base ceramic fibers synthesis from polycarbosilane- polymethylsilane blend polymers by melt spinning, Journal of the Ceramic Society of Japan,114,511(2006)
[1] 曹耿华,郑振兴,刘一雄,王敏,李纬华. 微观组织演变对细晶Mg-Y-Nd合金超塑性性能的影响[J]. 材料研究学报, 2019, 33(6): 452-460.
[2] 王建, 杨文静, 李卓梁, 丁桦, 张宁, 侯红亮. 7B04铝合金的超塑变形行为及其机理[J]. 材料研究学报, 2018, 32(9): 675-684.
[3] 董洪波, 姜智勇, 周盛武, 张坤, 刘洪骁. 预时效对TB8钛合金超塑性的影响[J]. 材料研究学报, 2018, 32(7): 541-546.
[4] 王振生,杨双双,彭真,谭清奇,郭建亭,周兰章. 两种NiAl基合金在酸腐蚀工况下的磨损特性[J]. 材料研究学报, 2015, 29(8): 595-601.
[5] 蒋婷慧,刘满平,谢学锋,王俊,吴振杰,刘强,Hans J. Roven. 高压扭转大塑性变形Al–Mg合金中的晶界结构*[J]. 材料研究学报, 2014, 28(5): 371-379.
[6] 王振生 周兰章 郭建亭 梁永纯 胡壮麒. NiAl--28Cr--5.94Mo--0.05Hf--0.01Ho定向共晶合金的高温氧化行为[J]. 材料研究学报, 2010, 24(6): 585-591.
[7] 肖旋 郭建亭 刘阳 赵海涛. 液态金属冷却工艺对NiAl--Cr(Mo)--Hf(Ho)定向合金组织的影响[J]. 材料研究学报, 2009, 23(4): 437-443.
[8] 王振生 郭建亭 周兰章 谢亿 盛立远 胡壮麒 . 三种NiAl材料的室温摩擦磨损性能[J]. 材料研究学报, 2009, 23(3): 225-230.
[9] 赵文娟; 丁桦; 曹富荣; 赵敬伟; 张亚玲 . Ti6Al4V合金的低温超塑性拉伸变形行为[J]. 材料研究学报, 2008, 22(3): 269-273.
[10] 王长丽; 张凯锋 . 纳米Ni和Ni/SiCp纳米复合材料的超塑性[J]. 材料研究学报, 2005, 19(6): 657-662.
[11] 史海生; 吴杏芳; 章靖国; 孙德生; 陈家光; 季思凯 . 超塑处理对喷射成形GCr15钢超塑性的影响[J]. 材料研究学报, 2002, 16(2): 212-218.
[12] 郭建亭; 杜兴蒿 . 金属间化合物的组织超塑性行为[J]. 材料研究学报, 2001, 15(5): 495-499.
[13] 肖旋; 尹涛; 陶冶; 郭建亭; 周兰章 . 用反应球磨法制备NiAl-TiC复合材料[J]. 材料研究学报, 2001, 15(4): 440-444.
[14] 齐义辉; 郭建亭; 崔传勇 . NiAl-Cr(Zr)合金的高温力学行为与韧脆转变[J]. 材料研究学报, 2001, 15(2): 209-214.
[15] 孙祖庆; 高德春; 杨王珥; 黄晓旭; 黄继华 . Fe3Al基合金用作结构材料的应用基础研究[J]. 材料研究学报, 2001, 15(1): 69-76.