Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (3): 199-208    DOI: 10.11901/1005.3093.2015.374
Orginal Article Current Issue | Archive | Adv Search |
Synergistic Effect of Introducing Ammonium Polyphosphate, Carbon Nanotubes and Acrylonitrile-butadiene-styrene to Nylon 6 for Improving Flame Retardancy
YANG Dian, LU Chang**(), TANG Tan, ZHANG Chunhui, MA Qingyan, HUANG Xinhui, ZHANG Yuqing
(Key Lab of Polymer Science and Nanotechnology, Chemical Engineering & Pharmaceutics School, Henan University of Science and Technology, Luoyang 471003, China)
Cite this article: 

YANG Dian, LU Chang, TANG Tan, ZHANG Chunhui, MA Qingyan, HUANG Xinhui, ZHANG Yuqing. Synergistic Effect of Introducing Ammonium Polyphosphate, Carbon Nanotubes and Acrylonitrile-butadiene-styrene to Nylon 6 for Improving Flame Retardancy. Chinese Journal of Materials Research, 2016, 30(3): 199-208.

Download:  HTML  PDF(4680KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon nanotubes (CNTs) and ammonium polyphosphate (APP) were applied to improve the flame retardancy of nylon6 (PA6). The results showed that PA6/APP/CNTs exhibited excellent flame retardancy with 1% CNTs and 20% APP (in mass fraction). While for a PA6/APP/CNTs blended with the flammable acrylonitrile-butadiene-styrene (ABS) it needed to add only 0.25% CNTs to meet the flame retardancy equal to that of the above mentioned PA6/APP/CNTs with 1% CNTs. TEM observation showed that CNTs were exclusively dispersed in the PA6 phase of PA6/ABS/APP. Rheological tests showed that the selective dispersion of CNTs facilitated the formation of the network structure of CNTs, thus the needed CNTs content could be lowered from 1% to 0.25% to meet the required flame retardancy. The morphology observation of the residue char revealed that the network structure was benefitial to the formation of compact residue char thus enhanced the flame retardancy for the 1% CNTs filled PA6/APP or 0.25% CNTs filled PA6/ABS/APP, respectively. When the CNTs content in PA6/ABS/APP was 1%, the formed network structure was so dense that the swell of the char layer was inhibited, thereby resulting in poor flame retardancy.

Key words:  composites      flame retardancy      nylon 6      ammonium polyphosphate      carbon nanotubes      network     
Received:  03 July 2015     
ZTFLH:  TQ323.6  
Fund: *Supported by National Natural Science Foundation of China No.51003024 and the Students Research Training Program of Henan University of Science and Technology
About author:  **To whom correspondence should be addressed, Tel: 13949241443, E-mail: luchang139@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.374     OR     https://www.cjmr.org/EN/Y2016/V30/I3/199

Sample code PA6 /% ABS /% APP /% CNTs /%
PA6 100
PA6/APP 80 0 20 0
PA6/APP/CNTs (0.125%) 80 0 20 0.125
PA6/APP/CNTs (0.25%) 80 0 20 0.25
PA6/APP/CNTs (0.5%) 80 0 20 0. 5
PA6/APP/CNTs (1%) 80 0 20 1
PA6/ABS/APP 56 24 20 0
PA6/ABS/APP/CNTs (0.125%) 56 24 20 0.125
PA6/ABS/APP/CNTs (0.25%) 24 56 20 0.25
PA6/ABS/APP/CNTs (0.5%) 56 24 20 0.5
PA6/ABS/APP/CNTs (1%) 56 24 20 1
Table 1  Formulation of blends
Fig.1  Heat release rate curves of PA6, PA6/APP/CNTs and PA6/ABS/APP/CNTs at different CNTs contents
Sample code LOI /% Vertical flammability test
PA6 20.1 Not rating
PA6/APP 27.8 Not rating
PA6/APP/CNTs (0.125%) 27 Not rating
PA6/APP/CNTs (0.25%) 25.3 Not rating
PA6/APP/CNTs (0.5%) 22.1 Not rating
PA6/APP/CNTs (1%) 34.5 V-0
ABS/PA6/APP 23.2 Not rating
PA6/ABS/APP/CNTs (0.125%) 24 Not rating
PA6/ABS/APP/CNTs (0.25%) 31.5 V-0
PA6/ABS/APP/CNTs (0.5%) 31.5 V-0
PA6/ABS/APP/CNTs (1%) 24 Not rating
Table 2  LOI and UL-94 rating of PA6/APP/CNTs and PA6/ABS/APP/CNTs
Fig.2  Residual mass curves of PA6, PA6/APP/CNTs and PA6/ABS/APP/CNTs at different CNTs contents
Fig.3  FT-IR spectra of ABS (a) and the remainder of PA6/ABS/APP extracted by formic acid (b)
Fig.4  TEM iamge of PA6/ABS/APP/CNTs (1%)
Fig.5  TGA curves of PA6/APP/CNTs and PA6/ABS/APP/CNTs at different CNTs contents
Fig.6  Storage modulus (G') of PA6/APP/CNTs at different CNTs contents vs. frequency (ω) at 225℃
Fig.7  Storage modulus (G') of PA6/ABS/APP/CNTs at different CNTs contents vs. frequency (ω) at 225℃
Fig.8  SEM images of intumescent char residue for PA6/APP/CNTs and PA6/ABS/APP/CNTs at different CNTs contents after vertical flammability tests, (a) PA6/APP; (b) PA6/ABS/APP; (c) PA6/APP/CNTs (0.125%); (d) PA6/ABS/APP/CNTs (0.125%); (e) PA6/APP/CNTs (0.25%); (f) PA6/ABS/APP/CNTs (0.25%); (g) PA6/APP/CNTs (1%); (h) PA6/ABS/APP/CNTs (1%)
Fig.9  Photographs of the residue of PA6/APP/CNTs and PA6/ABS/APP/CNTs after cone calorimeter test, (a) PA6/APP/CNTs (1%), (b) PA6/ABS/APP/CNTs (0.25%), (c) PA6/ABS/APP/CNTs (1%)
Fig.10  Complex viscosity (η*) of PA6/APP/CNTs (a) and PA6/ABS/APP/CNTs (b) at different CNTs contents vs. frequency (ω) at 225℃
Sample code Tensile strength /MPa Elongation at break /% Impact strength /(kJ/m2)
PA6 62.9±4.32 71.3±0.79 14.0±0.48
PA6/APP 43.0±5.46 6.0±1.09 6.2±0.70
PA6/APP/CNTs (0.125%) 24.4±3.88 2.3±0.16 3.5±0.49
PA6/APP/CNTs (0.25%) 39.1±2.20 3.5±0.10 6.2±0.64
PA6/APP/CNTs (0.5%) 28.5±2.15 3.0±0.97 5.2±0.54
PA6/APP/CNTs (1%) 30.3±1.53 2.7±0.21 3.7±0.21
PA6/PS/APP 21.3±1.03 2.1±0.10 3.8±0.76
PA6/ABS/APP/CNTs (0.125%) 27.3±2.11 2.5±0.25 3.4±0.54
PA6/ABS/APP/CNTs (0.25%) 16.7±0.08 11.7±1.73 8.7±1.11
PA6/ABS/APP/CNTs (0.5%) 14.6±0.12 4.8±0.34 3.6±0.68
Table 3  Mechanical properties of blends
1 T. Kashiwagi, E. Grulke, J. Hilding, R. Harris, W. Awad, J. DouglasThermal degradation and flammability properties of poly(propylene)/carbon nanotube composites ,Macromol Rapid Commun., 23(13), 761(2002)
2 S. Peeterbroeck, F. Laoutid, B. Swoboda, J. M.Lopez-Cuesta, N. Moreau, J. B. Nagy, M. Alexandre, P. Dubois, How carbon nanotube crushing can improve flame retardant behaviour in polymer nanocomposites?, Macromol Rapid Commun., 28(3), 260(2007)
3 H. Y. Ma, P. A. Song, Z. P. Fang, Flame retarded polymer nanocomposites: Development, trend and future perspective, Sci. China Chem., 54(2), 302(2011)
4 B. Schartel, P. Potschke, U. Knoll, M. Abdel-Goad,Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites, Eur. Polym. J., 41(5), 1061(2005)
5 T. Kashiwagi, E. Grulke, J. Hilding, K. Groth, R. Harris, K. Butler, J. Shields, S. Kharchenko, J. Douglas, Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites, Polymer, 45(12), 4227(2004)
6 G. Beyer, Short communication: Carbon nanotubes as flame retardants for polymers, Fire and Materials, 26(6), 291(2002)
7 T. Kashiwagi, F. Du, J. F. Douglas, K. I. Winey, R. H. Harris, J. R. Shields, Nanoparticle networks reduce the flammability of polymer nanocomposites, Nat. Mater., 4, 928(2005)
8 T. Kashiwagi, F. Du, K. I. Winey, K. M. Groth, J. R. Shields, S. P. Bellayer, K. Hansoo, J. F. Douglas, Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration, Polymer, 46, 471(2005)
9 S. Bourbigot, S. Duquesne, Fire retardant polymers: recent developments and opportunities, J. Mater. Chem., 17, 2283(2007)
10 G. B. Huang, S. Q. Wang, P. A. Song, C. L. Wu, Chen SQ and Wang X, Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites, Comp: Part A: Appl. Sci. Manuf., 59, 18(2014)
11 R. Delobel, B. M. Le, N. Ouassou, F. Alistiqsa, Thermal behaviours of ammonium polyphosphate-Pentaerythritol and ammonium pyrophosphate-pentaerythritol intumescent additives in polypropylene formulations, J. Fire Sci., 8(2), 85(1990)
12 X. Almeras, N. Renaut, C. Jama, B. M. Le, A. Tóth, S. Bourbigot, G. Marosi, F. Poutch, Structure and morphology of an intumescent polypropylene blend, J. Appl. Polym. Sci., 93(1), 402(2004)
13 H. Y. Ma, L. F. Tong, Z. B. Xu, Z. P. Fang, Functionalizing carbon nanotubes by grafting on intumescent flame retardant: nanocomposite synthesis, Morphology, Rheology, and Flammability, Adv. Funct. Mater., 18(3), 414(2008)
14 P. C. Ma, N. A. Siddiqui, G. Marom, J. K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Composites: Part A, 41, 1345(2010)
15 M. Wu, L. Shaw, Electrical and mechanical behaviors of carbon nanotube-filled polymer blends, J. Appl. Polym. Sci., 99(2), 477(2006)
16 S. Bose, A. R. Bhattacharyya, P. V. Kodgire, A. R. Kulkarni, A. S. Misra, Interactions induced dispersion and confinement of multi-walled carbon nanotubes in co-continuous polymer blends, J. Nanosci. Nanotechnol., 8(4), 1867(2008)
17 P. Kiliaris, C. D. Papaspyrides, R. Xalter, R. Pfaendner, Study on the properties of polyamide 6 blended with melamine polyphosphate and layered silicates, Polym. Degrad. Stab., 97, 1215(2012)
18 S. Bourbigot, B. M. Le, F. Dabrowski, J. W. Gilman, T. Kashiwagi, PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations, Fire Mater., 24(4), 201(2000)
19 X. Almeras, M. L. Bras, P. Hornsby, S. Bourbigot, G. Marosi, S. Keszei, F. Poutch, Effect of fillers on the fire retardancy of intumescent polypropylene compounds, Polym. Degrad. Stab., 82, 325(2003)
20 A. Riva, G. Camino, L. Fomperie, P. Amigoue, Fire retardant mechanism in intumescent ethylene vinyl acetate compositions, Polym. Degrad. Stab., 82, 341(2003)
21 J. W. Gilman,Flammability and Thermal Stability Studies of Polymer Layered-Silicate (Clay) Nanocomposites, Appl Clay Sci., 15, 31(1999)
22 H. O. Yu, J. Liu, X. Wen, Z. W. Jiang, Y. J. Wang, L. Wang, J. Zheng, S. Y. Fu, T. Tang, Charing polymer wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of epoxy resin, Polymer, 52, 4891(2011)
23 S. V. Levchik, L. Costa, G. Camino, Effect of the fire-retardant, ammonium polyphosphate, on the thermal decomposition of aliphatic polyamides: Part II--polyamide 6, Polym. Degrad. Stab., 36(3), 229(1992)
24 S. V. Levchik, G. F. Levchik, A. I. Balabanovich, G. Caminob, Mechanistic study of combustion performance and thermal decomposition behaviour of nylon 6 with added halogen-free fire retardants, Polym. Degrad. Stab., 54, 217(1996)
25 T. Kashiwagi, J. Fagan, J. F. Douglas, K. Yamamoto, A. N. Heckert, S. D. Leigh, J. Obrzut, D. Fangming, S. L. Gibson, M. Minfang, K. I. Winey, R. Haggenmueller, Relationship between dispersion metric and properties of PMMA/SWNT nanocomposites, Polymer, 48, 4855(2007)
26 S. Bourbigot, B. M. Le, R. Delobel, Fire degradation of an intumescent flame retardant polypropylene using the cone calorimeter, J. Fire Sci., 13, 3(1995)
27 X. Y. Wang, Y. Li, W. W. Liao, J. Gu, D. Li, A new intumescent flame-retardant: preparation, surface modification, and its application in polypropylene, Polym. Adv. Technol., 19, 1055(2008)
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] CHEN Ruizhi, LIU Lirong, GUO Shengdong, ZHANG Mai, LU Guangxian, LI Yuan, ZHAO Yunsong, ZHANG Jian. Microstructural Stability and Stress Rupture Property of a 6Re/3Ru Containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2023, 37(10): 721-730.
[7] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[8] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[9] HUANG Huan, ZHANG Xuntao, YANG Shangke, XIAO Liuxin, ZHANG Zhaoxin, YAN Lei, LIN Hailan, BIAN Jun, CHEN Daiqiang. Properties of Nylon PA6-based Nanocomposites Co-modified with Graphene Oxide/sodium Benzoate Complex Nucleating Agent[J]. 材料研究学报, 2022, 36(6): 416-424.
[10] LIAO Jingwen, RAO Chunxing, WANG Yanqin, CHEN Weiyi. Fluorescent Tracing Abilities and Mechanical Properties of Au NCs/HA/PVA Composite Hydrogel[J]. 材料研究学报, 2022, 36(2): 107-113.
[11] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[12] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[13] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[14] PAN Ying, ZHAO Hongting. Preparation of Halloysite Based Layer-by-Layer Coating on Flexible Polyurethane Foam and Its Performance of Flame Retardant and Smoke Suppression[J]. 材料研究学报, 2021, 35(6): 449-457.
[15] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
No Suggested Reading articles found!