材料研究学报, 2020, 34(7): 505-510 DOI: 10.11901/1005.3093.2019.476

研究论文

不同强度301L冷轧板激光对焊接头的组织和力学性能

范佳斐1, 刘伟,1, 郭相忠1, 李喜庆1, 胡立国2

1.北京交通大学机械与电子控制工程学院 北京 100044

2.中车长春轨道客车股份有限公司 长春 130062

Microstructure and Mechanical Properties of Laser Butt Welded 301L Cold-rolled Plates of Different Strength

FAN Jiafei1, LIU Wei,1, GUO Xiangzhong1, LI Xiqing1, HU Liguo2

1.School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China

2.CRRC Chang Chun Railway Vehicles Co. Ltd. , Changchun 130062, China

通讯作者: 刘伟,教授,weiliu@bjtu.edu.cn,研究方向为金属焊接

责任编辑: 吴岩

收稿日期: 2019-10-15   修回日期: 2019-12-19   网络出版日期: 2020-07-25

基金资助: 中国铁路总公司科技研发项目.  2017J011-C

Corresponding authors: LIU Wei, Tel: (010)51683938, E-mail:weiliu@bjtu.du.cn

Received: 2019-10-15   Revised: 2019-12-19   Online: 2020-07-25

Fund supported: Scientific Research and Development Projects of China Railways Corporation.  2017J011-C

作者简介 About authors

范佳斐,男,1993年生,博士生

摘要

研究了4级强度亚稳态奥氏体不锈钢301L-DLT、301L-ST、301L-MT和301L-HT冷轧薄板激光对焊接头的凝固组织和拉伸性能。激光焊缝以初始铁素体FA模式凝固,热裂敏感性较小;焊缝由垂直熔合线向内生长的柱状晶组成,没有中心等轴晶粒区。焊缝组织中有奥氏体和板条状、骨架状和蠕虫状铁素体,无杂质、热裂纹和析出相。一次铁素体枝晶臂的平均间距约为17.5 μm,平均铁素体量为5.7%(体积分数)。焊缝的硬度为208~241HV,低于301L-ST、301L-MT和301L-HT板材的硬度。301L-DLT和301L-ST板激光焊件的拉伸断裂位置在母材内,301L-MT和301L-HT板焊件的断裂位置在焊缝内,焊缝金属的断裂强度为886 MPa和921 MPa。301L-HT板焊件的塑性较低,其余三种强度冷轧板激光焊件的拉伸性能都达到了JIS G 4305标准中相应强度冷轧301L板材的力学性能。

关键词: 金属材料 ; 冷轧301L ; 激光对焊 ; 凝固组织 ; 力学性能

Abstract

The microstructure and tensile properties of laser butt welding joints for cold-rolled plates of metastable austenitic stainless steel with four grades of strength were investigated, namely 301L-DLT, 301L-ST, 301L-MT and 301L-HT. The laser molten pool solidifies as primary ferrites and the formed weld bead presents low thermal cracking susceptibility, which is composed of columnar grains that grew vertically inward from the fusion boundary, but a central equiaxed grain region is absent. Microstructure of the weld seam consists of austenite and lathy, skeleton- and vermicular-ferrite, while no impurities, hot cracking and precipitates were detected. The average spacing of the primary ferrite dendritic arms is approximately 17.5 μm, and the average ferrite amount is 5.7% (volume fraction). The hardness of weld seam is 208~241HV, which is lower than the hardness of 301L-ST, 301L-MT and 301L-HT plates. The tensile fracture of laser weld joints of 301L-DLT and 301L-ST occurs within the base metal, and that of 301L-MT and 301L-HT takes place in the weld seam, correspondingly their fracture strength is 886 MPa and 921 MPa respectively. Except for the lower plasticity of the 301L-HT weld joint, the tensile properties of weld joint of the other three steels all meet the requirements of mechanical properties in JIS G 4305 standard for the cold-rolled 301L plates of the relevant strength grade.

Keywords: metallic materials ; cold-rolled 301L plates ; laser butt weld ; solidification microstructure ; mechanical property

PDF (4366KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

范佳斐, 刘伟, 郭相忠, 李喜庆, 胡立国. 不同强度301L冷轧板激光对焊接头的组织和力学性能. 材料研究学报[J], 2020, 34(7): 505-510 DOI:10.11901/1005.3093.2019.476

FAN Jiafei, LIU Wei, GUO Xiangzhong, LI Xiqing, HU Liguo. Microstructure and Mechanical Properties of Laser Butt Welded 301L Cold-rolled Plates of Different Strength. Chinese Journal of Materials Research[J], 2020, 34(7): 505-510 DOI:10.11901/1005.3093.2019.476

激光快速成型是一种先进的材料加工技术。激光成型奥氏体不锈钢中的初始奥氏体凝固组织,其热裂敏感性比初始铁素体凝固组织的热裂敏感性高得多[1,2,3,4,5]。根据裂纹的位置和产生时的温度,可将热裂分为在较高的脆性温度区间产生的液化开裂和在较低的低延性温度区间产生的低延性开裂,都多发在初始奥氏体凝固的组织中[4,5]。凝固组织的热裂敏感性对奥氏体不锈钢激光成型件性能的影响,至关重要。

根据Cr/Ni伪二元相图,基于铬镍当量比Creq/Nieq奥氏体不锈钢的凝固可分为4种模式,依次为A模式(<1.25):L→L+γγ,AF模式(1.25~1.48):L→L+γ→L+γ+(δ+γ)共晶γ+δ,FA模式(1.48~1.95):L→L+δ→L+δ+(δ+γ)包晶,共晶γ+δ,以及F模式(>1.95):L→L+δδγ+δ。冷却速度,是影响300系奥氏体不锈钢凝固行为的一个重要因素[5]。在快冷条件下一些奥氏体不锈钢的凝固由初始铁素体模式变为初始奥氏体,其热裂敏感性随之提高[6,7,8,9]。氮的加入也使奥氏体不锈钢的凝固从初始铁素体模式变为初始奥氏体,并促进铁素体转变位置处的热裂[10,11,12,13]。关于奥氏体不锈钢快速凝固微观组织和热裂已经进行了很多研究,但是尚未完全了解凝固行为变化对热裂敏感性的影响[9]

301L是一种低铬镍、氮合金化的亚稳态奥氏体不锈钢。301L板材在冷轧过程中随着变形量的增大生成了数量不等的马氏体,冷轧系列板的屈服强度(200~700 MPa)达到了车体结构要求的强度等级和各项力学性能[14]。301L不锈钢激光焊接和激光-MIG复合焊接熔合区的微观组织是以FA模式凝固的奥氏体和少量枝状铁素体[15,16,17],表明其凝固行为对冷却速度的敏感性较弱。本文对4个强度等级的301L冷轧板激光焊接试件进行拉伸实验,研究301L激光对焊接头的微观组织和凝固模式以及激光焊接试件的断裂行为和力学性能。

1 实验方法

使用板厚为1.5 mm、调质状态为¼H、½H、¾H和H全硬化的301L-DLT、301L-ST、301L-MT和301L-HT冷轧板材制备4种强度冷轧硬化板材的激光对焊试件,板材的化学成分列于表1,机械性能列于表2

表1   301L板材的化学成分

Table 1  Chemical compositions of 301L plate (mass fraction, %)

CSiMnNiCrN
0.0220.321.267.3217.710.13

新窗口打开| 下载CSV


表2   301L板材的力学性能

Table 2  Mechanical properties of 301L plates

PlateR0.2/MPaRm/MPaδ/%
301L-DLT36574053
301L-ST43579052
301L-MT52488037
301L-HT70095028

新窗口打开| 下载CSV


根据WRC-1992相组分图计算出301L的铬镍当量比Creq/Nieq为1.66,因此301L以FA模式凝固,铁素体含量约为4%(体积分数)。

焊接板材不开坡口,焊前将板材端面打磨后用丙酮清洗。使用Trudisk4002固体激光器进行激光焊接,光纤直径为0.5 mm,焊接功率为2.5 kW、焊接速度为1.5 m/min、离焦量为0 mm,保护Ar气0º侧吹,流量为30 L/min。

用线切割将焊件加工成拉伸试样(图1),根据ISO 6892:1998标准在MTS材料试验机上进行拉伸实验,拉伸速度为4 mm/min。

图1

图1   激光焊接拉伸试样的尺寸

Fig.1   Dimensions of laser welded tensile specimen


用扫描电镜和光学显微镜分析激光焊缝凝固组织,用EDS分析焊缝组织的杂质偏析,用Fischer FMP30铁磁仪测定焊缝的铁素体含量,用HXZ-1000显微硬度计测定接头硬度分布,载荷100 g,加载时间15 s。

2 实验结果

2.1 焊缝的凝固组织

图2给出了激光焊接接头的凝固组织,各局部区域微观组织的位置在焊缝整体图图2a中标出。从图2a~c可以看出,焊缝中柱状晶的凝固从熔合区两侧的板材边界起始,垂直熔合线向焊缝内生长,最终在中心线相遇。这种凝固行为使焊缝内没有中心等轴晶粒区。焊缝组织为奥氏体和枝状铁素体,焊缝底部的铁素体枝晶间距比顶部的小,底部的铁素体分布比顶部的更均匀,一次铁素体枝晶臂的平均间距约为17.5 μm。焊缝整体没有热裂纹和其它凝固缺陷,最终凝固的柱状晶接合线附近也没可见杂质,但是焊缝的顶部局部凹陷,焊缝底部的中心明显下沉。图2d~f给出了焊缝中部和底部不同区域的SEM高倍显微组织,可见铁素体呈板条状、骨架状和蠕虫状,板条铁素体束的宽度约为14 μm。铁素体的形态表明,301L激光焊缝以初始铁素体FA模式凝固,焊缝中平均铁素体量约为5.7%(体积分数)。在焊缝中心最后凝固区域的高倍组织中未见夹杂物和析出相,根据一次铁素体枝晶臂间距可推测焊缝金属熔池冷却速度约为90~100℃/s[18]。焊接热影响区的奥氏体发生了再结晶,晶粒尺寸为20~50 μm,部分晶粒明显长大。

图2

图2   激光焊接接头的显微组织

Fig.2   Microstructure of laser butt welded joint (a) overall view of welded joint; (b) optical micrograph of upper weld; (c) optical micrograph of weld bottom; (d) SEM micrograph of middle weld center; (e) lathy ferrite bunch in SEM micrograph; (f) SEM micrograph of bottom weld center


奥氏体不锈钢焊接金属中的低熔点杂质元素,通常在最后凝固的焊缝中心区域偏聚[18,19]。为了分析与凝固相关的杂质相的析出,在半高焊缝的柱状晶接合线附近进行了EDS成分检测,检测点位置如图2d所示。结果表明,在焊缝内没有磷、硫富集区和相关化合物。

2.2 激光焊接接头的拉伸性能和断裂行为

图3给出了4种强度301L冷轧板激光焊接接头的硬度分布。可以看出,焊缝的硬度为208~241HV,平均硬度为218HV,与301L-DLT板材的硬度相近,比301L-ST、301L-MT和301L-HT冷轧板的低;三种高强度冷轧板焊接热影响区的硬度明显较低,从焊缝边缘至冷轧母材原始硬度的距离约0.5 mm。

图3

图3   不同强度激光焊接301L冷轧板的显微硬度分布

Fig.3   Microhardness profiles of laser welded 301L cold-rolled plates with different strengths


图4给出了4种强度冷轧板激光焊接试样的拉伸曲线。图4表明,随着板材强度的提高焊接试样的屈服强度和断裂强度提高而延伸率下降。4种强度301L冷轧板的激光焊接接头抗拉性能优异,301L-DLT、301L-ST和301L-MT三种冷轧板激光焊接试样的断裂强度和延伸率都达到了JIS G 4305标准中相应强度冷轧板材的力学性能。301L-HT全硬化冷轧板焊接试样的断裂强度达到了标准,但是延伸率低于标准的最低值0.2。

图4

图4   不同强度激光焊接301L冷轧板的拉伸曲线

Fig.4   Tensile curves of laser welded 301L cold-rolled plates with different strengths


图5给出了4种强度冷轧板激光焊接试样的拉伸断裂位置。可以看出:301L-DLT和301L-ST激光焊件的断裂位置在焊缝附近;301L-MT和301L-HT焊件的断裂位置在焊缝内,焊缝的断裂位置与焊缝顶部的凹陷位置吻合。图5还表明,301L-DLT和301L-ST拉伸试样的板材与焊缝基本上保持等截面同步变形,试样的标距发生均匀伸长和截面减小,断裂位置在板材内。这表明,两试样的拉应力尚未达到激光焊缝的断裂强度。301L-MT和301L-HT两试样断口附近的焊缝和热影响区的局部截面明显小于标距内其它部位的板材,尤其是301L-HT全硬化冷轧板试样。这表明,在焊缝及其附近区域发生了非均匀集中塑性变形,两试样的拉伸应力达到了焊缝金属的断裂强度。

图5

图5   激光对焊的4种强度301L冷轧板的拉伸断裂位置

Fig.5   Tensile fracture positions of laser butt welded 301L cold-rolled plates with four grade strengths (a) 301L-DLT, (b) 301L-ST, (c) 301L-MT, (d) 301L-HT


301L-HT板激光焊件的延伸率较低,因为板材与焊缝的硬度相差悬殊。在拉伸过程中塑性变形集中在硬度较低的焊缝及热影响区,焊接试样标距内301L-HT板的长度和截面的变化很小。301L-ST激光焊件的断裂位置不在硬度较低的焊缝,可能与试样切割损伤有关。断裂起始于两侧板材切割部位,断裂面的变形不均匀,这也是激光焊件的延伸率和断裂强度较低的原因。

图6给出了激光焊接试样的焊缝和冷轧板内的拉伸断口形貌。从激光焊缝顶部和底部的断口(图6a,b)可见:焊缝金属具有良好的塑性,断裂面内没有夹杂物、析出颗粒或凝固裂纹等缺陷,焊缝顶部的断口凹凸较大,韧窝的尺寸差别也较大;焊缝底部的断口比较平坦,变形也比顶部焊缝更均匀,可能与焊缝顶部和底部凝固组织的均匀性和柱状晶尺寸不同有关。301L-DLT冷轧板内的拉伸断口形貌(图6c) 是典型的冷轧板断口形貌,可见这种断裂为无缺陷的塑性断裂,断面有平行轧制平面的拉伸断裂韧带。

图6

图6   激光焊缝和冷轧板材的断口形貌

Fig.6   Fracture morphologies of upper laser weld (a), bottom laser weld (b) and 301L-DLT plate (c)


3 讨论

在快冷条件下301L冷轧板激光焊接金属并不像与其铬镍当量比相近的304不锈钢由初始铁素体凝固模式变为初始奥氏体[3,9],而是仍以初始铁素体FA模式凝固,并且焊缝内的铁素体量较多。对301L不锈钢激光焊接和MIG焊接微观组织的对比也证明,301L焊缝金属的凝固模式对冷却条件不敏感[15,16]。初始铁素体对热裂有重要的抑制作用,能钉扎凝固晶界增大热裂纹的扩展阻力[13]。301L焊接金属的这种快冷凝固模式,可能与其低铬、镍成分组合有关。虽然添加了奥氏体稳定元素氮,常温下其奥氏体的稳定性仍远低于304不锈钢[14]。根据高斯光束沿传播方向的线能量分布规律,焊缝熔池顶部的能量输入大于底部,即焊缝熔池顶部的温度高于底部[20]。当熔池温度降至1400 ~ 1450℃初始铁素体凝固温度区间时,焊缝顶部周围板材温度的升高和导热率的较低使顶部的冷却速度低于焊缝底部,并且顶部熔池中心和边缘的过冷度差大于底部[21,22],因此焊缝底部的柱状晶比顶部更细、方向更一致,凝固组织的铁素体分布更均匀。焊缝中没有中心等轴晶粒区,说明焊缝金属凝固主要通过两侧的固体母材散热,焊缝纵向散热对熔池金属凝固的影响不明显。

由于奥氏体中硫、磷等杂质的溶解度较低,在快冷条件下以初始奥氏体模式凝固的不锈钢在最终凝固的奥氏体边界形成磷、硫的富集区或析出磷、硫的化合物,使这一部位成为潜在的热裂敏感区,在外加载荷作用下易出现低延性裂纹,从而降低焊接金属的断裂强度和延伸率[23,24]。以初始奥氏体模式凝固的激光成型奥氏体不锈钢的断裂强度大多为650~750 MPa,延伸率低于0.5 [25,26],一些激光成型金属的断裂面有低延性裂纹[4,27,28]。而对301L不锈钢激光焊缝的微观成分检测和断口分析证明,其激光焊接金属中没有热裂纹和凝固导致的杂质偏析对拉伸性能的不利影响。

上述结果表明,301L亚稳态不锈钢具有优异的激光加工成型性能,其初始铁素体模式凝固的激光焊缝组织保证了焊件在外载荷作用下断口内没有低延性断裂区,焊接金属的断裂强度高达886 MPa和921 MPa,远高于铬镍当量比相近的以初始奥氏体模式凝固焊接金属的断裂强度。

4 结论

(1) 301L激光焊缝以初始铁素体FA模式凝固,热裂敏感性低;焊缝柱状晶垂直熔合线向内生长在中心线相遇,没有中心等轴晶粒区。焊缝组织为奥氏体和铁素体,铁素体呈板条状、骨架状和蠕虫状,一次铁素体枝晶臂平均间距约17.5 μm,平均铁素体量5.7%体积分数。焊缝中最后凝固的中心柱状晶接合线附近没有杂质,焊缝整体没有热裂纹和析出相。

(2) 激光焊缝的硬度为208~241HV,与301L-DLT板材的硬度接近,低于301L-ST、301L-MT和301L-HT冷轧板硬度。301L-DLT和301L-ST板焊接试样的拉伸断裂位置在母材内,301L-MT和301L-HT板焊接试样的断裂位置在焊缝内,激光焊缝金属的断裂强度为886 MPa和921 MPa。

(3) 301L-HT板激光焊件的塑性低于标准规定的最低值0.2,其余三种强度冷轧板激光焊接试样的拉伸性能都达到JIS G 4305标准中相应强度冷轧301L板材的力学性能。

参考文献

Yu J, Rombouts M, Maes G.

Cracking behavior and mechanical properties of austenitic stainless steel parts produced by laser metal deposition

[J]. Mater. Des., 2013, 45: 228

DOI      URL     [本文引用: 1]

Lin X, Yang H O, Chen J, et al.

Microstructure evolution of 316L stainless steel during laser rapid forming

[J]. Acta Metall. Sin., 2006, 42: 361

URL     [本文引用: 1]

crystallographic orientation leaning to, even parallel to the deposition direction. There also exist a thin layer in which the dendrites grow along the laser scaning direction at the top of the LRF sample. Clad layer bandings were found in the samples; however, the continuity of the growth of the columnar dendrites was not upset. The growth morphology of primary  dendrites can be predicted by the microstructure selection models based on the maximum interface temperature criterion. The formation of the clad layer bandings and the epitaxial growth characteristic during LRF are also explained by the criteria for planar interface instability and dendritic growth theory and the columnar to equiaxed transition model. There shows an reasonable agreement between the theoretic analysis and the experimental results.]]>

(林鑫, 杨海欧, 陈静.

激光快速成形过程中316L不锈钢显微组织的演变

[J]. 金属学报, 2006, 42: 361)

URL     [本文引用: 1]

对316L不锈钢在激光快速成形过程中的凝固行为和组织形成进行了系统考察,发现,成形件呈现全&#61543;奥氏体结构,其组织主要由从基体连续外延生长的细长列状枝晶组成,并显示较强的晶体取向性,其(100)晶向基本平行沉积方向,仅在顶部出现了一薄层转向枝晶层,而在成形件中出现的层带结构并未影响不同熔覆沉积层之间组织生长和取向的连续性,并采用最高界面生长温度判据对激光快速成形中的相形成规律进行了分析,并结合平界面稳定性分析,枝晶生长理论和我们所发展的列状晶/等轴晶转变模型对成形件中的层带形成,外延列状晶生长特性进行了较为系统的研究,并与实验结果得到了合理的吻合。

Yang JJ, Wang Y, Li F Z, et al.

Weldability, microstructure and mechanical properties of laser-welded selective laser melted 304 stainless steel joints

[J]. J. Mater. Sci. Technol., 2019, 35: 1817

DOI      URL     [本文引用: 2]

Lee D J, Byun J C, Sung J H, et al.

The dependence of crack properties on the Cr/Ni equivalent ratio in AISI 304L austenitic stainless steel weld metals

[J]. Mater. Sci. Eng. A, 2009, 513-514: 154

DOI      URL     [本文引用: 3]

Lippold J C, Kotecki D J. Welding Metallurgy and Weldability of Stainless Steels [M]. New Jersey: Wiley-Interscience, 2008

[本文引用: 3]

Fukumoto S, Fujiwara K, Toji S, et al.

Small-scale resistance spot welding of austenitic stainless steels

[J]. Mater. Sci. Eng. A, 2008, 492: 243

DOI      URL     [本文引用: 1]

Singh S, Hurtig K, Andersson J.

Investigation on effect of welding parameters on solidification cracking of austenitic stainless steel 314

[J]. Procedia Manuf., 2018, 25: 351

[本文引用: 1]

Yan J, Gao M, Zeng X Y.

Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser-TIG hybrid welding

[J]. Opt. Laser Eng., 2010, 48: 512

DOI      URL     [本文引用: 1]

AbstractThis paper investigated the microstructure and mechanical properties of 304 stainless steel joints by tungsten inert gas (TIG) welding, laser welding and laser-TIG hybrid welding. The X-ray diffraction was used to analyze the phase composition, while the microscopy was conducted to study the microstructure characters of joints. Finally, tensile tests were performed and the fracture surfaces were analyzed. The results showed that the joint by laser welding had highest tensile strength and smallest dendrite size in all joints, while the joint by TIG welding had lowest tensile strength, biggest dendrite size. Furthermore, transition zone and heat affected zone can be observed in the joint of TIG welding. The fractograph observation showed that the TIG welding joint existed as cup–cone shaped fracture, while the laser welding and hybrid welding joints existed as pure-shear fracture. The laser welding and hybrid welding are suitable for welding 304 stainless steel owing to their high welding speed and excellent mechanical properties.]]>

Lippold J C.

Solidification behavior and cracking susceptibility of pulsed-laser welds in austenitic stainless steels

[J]. Weld. J., 1994, 73: 129

[本文引用: 3]

Fang F, Li J Y, Wang Y D,

Influences of alloying elements and solidification modes on the nitrogen content of nitrogenous stainless steel

[J]. J. Univ. Sci. Technol. Beijing, 2014, 36: 1052

[本文引用: 1]

(房菲, 李静媛, 王一德.

合金元素及凝固模式对含氮不锈钢氮含量的影响

[J]. 北京科技大学学报, 2014, 36: 1052)

[本文引用: 1]

Shankar V, Gill T P S, Mannan S L, et al.

Effect of nitrogen addition on microstructure and fusion zone cracking in type 316L stainless steel weld metals

[J]. Mater. Sci. Eng. A, 2003, 343: 170

DOI      URL     [本文引用: 1]

Deng B Z, Ma C Y, Peng Y, et al.

Effect of nitrogen on solidification mode and microstructure of 316L stainless steel

[J]. Trans. China Weld. Inst., 2010, 31(5): 82

[本文引用: 1]

(邓宝柱, 马成勇, 彭云.

氮对316L不锈钢焊缝凝固模式和组织的影响

[J]. 焊接学报, 2010, 31(5): 82)

[本文引用: 1]

Shankar V, Gill T P S, Mannan S L, et al.

Evaluation of hot cracking nitrogen-bearing and fully austenitic stainless steel weldments

[J]. Weld. J., 1998, 77: 193

[本文引用: 2]

Liu W, Li Z B, Wang X, et al.

Effect of strain rate on strain induced α'-martensite transformation and mechanical response of austenitic stainless steels

[J]. Acta Metall. Sin., 2009, 45: 285

URL     [本文引用: 2]

-4 s-1 (slow strain rate) and 2×10-2 s-1 (fast strain rate). The mechanism and volume fraction of strain induced α'--martensite transformation were investigated by using TEM, SEM and XRD. The amount of strain induced α'--martensite in EN1.4318 is much higher than that in EN1.4301 when both steels are deformed at the same strain rate. Adiabatic heating caused by the fast strain obviously decreases the α'--martensite transformation rate and work hardening rate in cold rolled EN1.4318 steel. The amount of α'--martensite and transformation rate for both steels are reduced during uniform deformation compared with those at slow strain rate, this behavior is more significant in cold rolled steels than that in annealed ones. For the more stable EN1.4301 with low saturated amount of α'--martensite (<0.3, volume fraction), rapidly plastic instability and tremendous reduction of uniform elongation are due to the small hardening effect at fast strain. In contrast, for EN1.4318 with low stacking fault energy and rather high saturated amount of α'--martensite, the tensile strength is significant decreased with increasing saturated amount of α'--martensite when deformation at fast strain. The strain rate sensitivity of EN1.4318 is much higher than that of EN1.4301.]]>

(刘伟, 李志斌, 王翔.

应变速率对奥氏体不锈钢应变诱发α'-马氏体转变和力学行为的影响

[J]. 金属学报, 2009, 45: 285)

URL     [本文引用: 2]

-4 s-1(慢速拉伸)和2×10-2 s-1(快速拉伸) 2种应变速率对EN1.4318 (AISI301L)和EN1.4301(AISI304)冷轧和退火态奥氏体不锈钢板试样(厚度为2 mm)进行了拉伸实验, 用TEM, SEM以及XRD分析应变诱发 α'--马氏体转变机制和转变量. 结果表明, 相同应变速率拉伸时, EN1.4318钢的α'--马氏体转变量远远高于EN1.4301钢; 快速拉伸可明显抑制冷轧EN1.4318钢中α'--马氏体的转变速率, 降低硬化率. 在均匀变形阶段, 2种钢中α'--马氏体的转变速率和转变量比慢速拉伸时有不同程度地下降, 而且冷轧比退火态更显著. 奥氏体稳定性较高的EN1.4301钢, 常温拉伸 α'--马氏体转变饱和值低于0.3(体积分数), 增强效果小, 快速拉伸导致较快发生塑性失稳和均匀延伸率大幅降低; 而对于层错能低、α'--马氏体饱和值很高的EN1.4318钢, 快速拉伸则使抗拉强度大幅降低, 而且下降的幅度随α'--马氏体饱和值增加而增大; EN1.4318钢的应变速率敏感性远大于EN1.4301钢.]]>

Tang D, Wang C M, Tian M, et al.

Contrasting study on quality of SUS301L-HT jointsin fiber laser welding and MIG welding

[J]. Chin. J. Laser, 2015, 42: 0703003

[本文引用: 2]

(唐舵, 王春明, 田曼.

SUS301L-HT不锈钢激光焊接与MIG焊接对比试验研究

[J]. 中国激光, 2015, 42: 0703003)

[本文引用: 2]

Chen Y, Wu S K, Xiao R S.

Mircostructure and performance of CO2-MIG hybrid welding of SUS301L stainless steel

[J]. Chin. J. Lasers, 2014, 41: 0103004

[本文引用: 2]

(陈洋, 吴世凯, 肖荣诗.

SUS301L不锈钢CO2激光-MIG复合焊接头组织性能研究

[J]. 中国激光, 2014, 41: 0103004)

[本文引用: 2]

Zeng Q, Zhu S W, Fu Z H.

Effects of different welding processes on microstructure and mechanical properties of SUS301L-MT stainless steel joints

[J]. Laser Optoelectronics Progress, 2018, 55: 031405

DOI      URL     [本文引用: 1]

(曾强, 朱绍维, 付正鸿.

不同焊接工艺对SUS301L-MT不锈钢接头组织和力学性能的影响

[J]. 激光与光电子学进展, 2018, 55: 031405)

[本文引用: 1]

Katayama S, Matsunawa A.

Solidification microstructure of laser welded stainless steels

[A]. Proceedings of Material Processing Symposium [C]. Laser Institute of America. 1984, 60, doi: 10.2351/1.5057623

[本文引用: 2]

Huang F X, Wang X H, Wang W J.

Effect of cooling rate on the solidification process of austenitic stainless steel by in-situ observation

[J]. J. Univ. Sci. Technol. Beijing, 2012, 34: 530

[本文引用: 1]

(黄福祥, 王新华, 王万军.

冷却速率对奥氏体不锈钢凝固过程影响的原位观察

[J]. 北京科技大学学报, 2012, 34: 530)

[本文引用: 1]

Wang R P, Lei Y P, Shi Y W.

Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet

[J]. Opt. Laser Technol., 2011, 43: 870

DOI      URL     [本文引用: 1]

AbstractA three-dimensional transient numerical model was developed to study the temperature field and molten pool shape during continuous laser keyhole welding. The volume-of-fluid (VOF) method was employed to track free surfaces. Melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. The enthalpy-porosity technique was employed to account for the latent heat during melting and solidification. Temperature fields and weld pool shape were calculated using FLUENT software. The calculated weld dimensions agreed reasonable well with the experimental results. The effectiveness of the developed computational procedure had been confirmed.]]>

Artinov A, Bachmann M, Rethmeier M.

Equivalent heat source approach in a 3D transient heat transfer simulation of full-penetration high power laser beam welding of thick metal plates

[J]. Int. J. Heat Mass Transfer, 2018, 122: 1003

DOI      URL     [本文引用: 1]

Li X Y, Wang L J, Yang L J, et al.

Modeling of temperature field and pool formation during linear laser welding of DP1000 steel

[J]. J. Mater. Proc. Technol., 2014, 214: 1844

DOI      URL     [本文引用: 1]

Ramirez A J, Lippold J C.

High temperature behavior of Ni-base weld metal: Part II-Insight into the mechanism for ductility dip cracking

[J]. Mater. Sci. Eng. A, 2004, 380: 245

DOI      URL     [本文引用: 1]

Collins M G, Ramirez A J, Lippold J C.

An investigation of ductility-dip cracking in nickel-based weld metals-Part III

[J]. Weld. J., 2004, 83: 39/S

[本文引用: 1]

Guan K, Wang Z M, Gao M, et al.

Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel

[J]. Mater. Des., 2013, 50: 581

DOI      URL     [本文引用: 1]

Wang X L, Deng D W, Yi H L, et al.

Influences of pulse laser parameters on properties of AISI316L stainless steel thin-walled part by laser material deposition

[J]. Opt. Laser Technol., 2017, 92: 5

DOI      URL     [本文引用: 1]

Zhang Y K, Zhang L, Luo K Y, et al.

Effects of Laser Shock Processing on Mechanical Properties of Laser Welded ANSI 304 Stainless Steel Joint

[J]. Chin. J. Mech. Eng., 2012, 25: 285

DOI      URL     [本文引用: 1]

Chen J K, Shi Y, Liu J, et al.

A study of austenitic stainless steel laser welding process

[J]. Appl. Laser, 2015, 35: 335

DOI      URL     [本文引用: 1]

(陈俊科, 石岩, 刘佳.

奥氏体不锈钢激光焊接工艺研究

[J]. 应用激光, 2015, 35: 335)

[本文引用: 1]

/