Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (7): 505-510    DOI: 10.11901/1005.3093.2019.476
  研究论文 本期目录 | 过刊浏览 |
不同强度301L冷轧板激光对焊接头的组织和力学性能
范佳斐1, 刘伟1(), 郭相忠1, 李喜庆1, 胡立国2
1.北京交通大学机械与电子控制工程学院 北京 100044
2.中车长春轨道客车股份有限公司 长春 130062
Microstructure and Mechanical Properties of Laser Butt Welded 301L Cold-rolled Plates of Different Strength
FAN Jiafei1, LIU Wei1(), GUO Xiangzhong1, LI Xiqing1, HU Liguo2
1.School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
2.CRRC Chang Chun Railway Vehicles Co. Ltd. , Changchun 130062, China
引用本文:

范佳斐, 刘伟, 郭相忠, 李喜庆, 胡立国. 不同强度301L冷轧板激光对焊接头的组织和力学性能[J]. 材料研究学报, 2020, 34(7): 505-510.
Jiafei FAN, Wei LIU, Xiangzhong GUO, Xiqing LI, Liguo HU. Microstructure and Mechanical Properties of Laser Butt Welded 301L Cold-rolled Plates of Different Strength[J]. Chinese Journal of Materials Research, 2020, 34(7): 505-510.

全文: PDF(4366 KB)   HTML
摘要: 

研究了4级强度亚稳态奥氏体不锈钢301L-DLT、301L-ST、301L-MT和301L-HT冷轧薄板激光对焊接头的凝固组织和拉伸性能。激光焊缝以初始铁素体FA模式凝固,热裂敏感性较小;焊缝由垂直熔合线向内生长的柱状晶组成,没有中心等轴晶粒区。焊缝组织中有奥氏体和板条状、骨架状和蠕虫状铁素体,无杂质、热裂纹和析出相。一次铁素体枝晶臂的平均间距约为17.5 μm,平均铁素体量为5.7%(体积分数)。焊缝的硬度为208~241HV,低于301L-ST、301L-MT和301L-HT板材的硬度。301L-DLT和301L-ST板激光焊件的拉伸断裂位置在母材内,301L-MT和301L-HT板焊件的断裂位置在焊缝内,焊缝金属的断裂强度为886 MPa和921 MPa。301L-HT板焊件的塑性较低,其余三种强度冷轧板激光焊件的拉伸性能都达到了JIS G 4305标准中相应强度冷轧301L板材的力学性能。

关键词 金属材料冷轧301L激光对焊凝固组织力学性能    
Abstract

The microstructure and tensile properties of laser butt welding joints for cold-rolled plates of metastable austenitic stainless steel with four grades of strength were investigated, namely 301L-DLT, 301L-ST, 301L-MT and 301L-HT. The laser molten pool solidifies as primary ferrites and the formed weld bead presents low thermal cracking susceptibility, which is composed of columnar grains that grew vertically inward from the fusion boundary, but a central equiaxed grain region is absent. Microstructure of the weld seam consists of austenite and lathy, skeleton- and vermicular-ferrite, while no impurities, hot cracking and precipitates were detected. The average spacing of the primary ferrite dendritic arms is approximately 17.5 μm, and the average ferrite amount is 5.7% (volume fraction). The hardness of weld seam is 208~241HV, which is lower than the hardness of 301L-ST, 301L-MT and 301L-HT plates. The tensile fracture of laser weld joints of 301L-DLT and 301L-ST occurs within the base metal, and that of 301L-MT and 301L-HT takes place in the weld seam, correspondingly their fracture strength is 886 MPa and 921 MPa respectively. Except for the lower plasticity of the 301L-HT weld joint, the tensile properties of weld joint of the other three steels all meet the requirements of mechanical properties in JIS G 4305 standard for the cold-rolled 301L plates of the relevant strength grade.

Key wordsmetallic materials    cold-rolled 301L plates    laser butt weld    solidification microstructure    mechanical property
收稿日期: 2019-10-15     
ZTFLH:  TG457.1  
基金资助:中国铁路总公司科技研发项目(2017J011-C)
作者简介: 范佳斐,男,1993年生,博士生
CSiMnNiCrN
0.0220.321.267.3217.710.13
表1  301L板材的化学成分
PlateR0.2/MPaRm/MPaδ/%
301L-DLT36574053
301L-ST43579052
301L-MT52488037
301L-HT70095028
表2  301L板材的力学性能
图1  激光焊接拉伸试样的尺寸
图2  激光焊接接头的显微组织
图3  不同强度激光焊接301L冷轧板的显微硬度分布
图4  不同强度激光焊接301L冷轧板的拉伸曲线
图5  激光对焊的4种强度301L冷轧板的拉伸断裂位置
图6  激光焊缝和冷轧板材的断口形貌
[1] Yu J, Rombouts M, Maes G. Cracking behavior and mechanical properties of austenitic stainless steel parts produced by laser metal deposition [J]. Mater. Des., 2013, 45: 228
doi: 10.1016/j.matdes.2012.08.078
[2] Lin X, Yang H O, Chen J, et al. Microstructure evolution of 316L stainless steel during laser rapid forming [J]. Acta Metall. Sin., 2006, 42: 361
[2] (林鑫, 杨海欧, 陈静等. 激光快速成形过程中316L不锈钢显微组织的演变 [J]. 金属学报, 2006, 42: 361)
[3] Yang JJ, Wang Y, Li F Z, et al. Weldability, microstructure and mechanical properties of laser-welded selective laser melted 304 stainless steel joints [J]. J. Mater. Sci. Technol., 2019, 35: 1817
doi: 10.1016/j.jmst.2019.04.017
[4] Lee D J, Byun J C, Sung J H, et al. The dependence of crack properties on the Cr/Ni equivalent ratio in AISI 304L austenitic stainless steel weld metals [J]. Mater. Sci. Eng. A, 2009, 513-514: 154
doi: 10.1016/j.msea.2009.01.049
[5] Lippold J C, Kotecki D J. Welding Metallurgy and Weldability of Stainless Steels [M]. New Jersey: Wiley-Interscience, 2008
[6] Fukumoto S, Fujiwara K, Toji S, et al. Small-scale resistance spot welding of austenitic stainless steels [J]. Mater. Sci. Eng. A, 2008, 492: 243
doi: 10.1016/j.msea.2008.05.002
[7] Singh S, Hurtig K, Andersson J. Investigation on effect of welding parameters on solidification cracking of austenitic stainless steel 314 [J]. Procedia Manuf., 2018, 25: 351
[8] Yan J, Gao M, Zeng X Y. Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser-TIG hybrid welding [J]. Opt. Laser Eng., 2010, 48: 512
doi: 10.1016/j.optlaseng.2009.08.009
[9] Lippold J C. Solidification behavior and cracking susceptibility of pulsed-laser welds in austenitic stainless steels [J]. Weld. J., 1994, 73: 129
[10] Fang F, Li J Y, Wang Y D, Influences of alloying elements and solidification modes on the nitrogen content of nitrogenous stainless steel [J]. J. Univ. Sci. Technol. Beijing, 2014, 36: 1052
[10] (房菲, 李静媛, 王一德. 合金元素及凝固模式对含氮不锈钢氮含量的影响 [J]. 北京科技大学学报, 2014, 36: 1052)
[11] Shankar V, Gill T P S, Mannan S L, et al. Effect of nitrogen addition on microstructure and fusion zone cracking in type 316L stainless steel weld metals [J]. Mater. Sci. Eng. A, 2003, 343: 170
doi: 10.1016/S0921-5093(02)00377-5
[12] Deng B Z, Ma C Y, Peng Y, et al. Effect of nitrogen on solidification mode and microstructure of 316L stainless steel [J]. Trans. China Weld. Inst., 2010, 31(5): 82
[12] (邓宝柱, 马成勇, 彭云等. 氮对316L不锈钢焊缝凝固模式和组织的影响 [J]. 焊接学报, 2010, 31(5): 82)
[13] Shankar V, Gill T P S, Mannan S L, et al. Evaluation of hot cracking nitrogen-bearing and fully austenitic stainless steel weldments [J]. Weld. J., 1998, 77: 193
[14] Liu W, Li Z B, Wang X, et al. Effect of strain rate on strain induced α'-martensite transformation and mechanical response of austenitic stainless steels [J]. Acta Metall. Sin., 2009, 45: 285
[14] (刘伟, 李志斌, 王翔等. 应变速率对奥氏体不锈钢应变诱发α'-马氏体转变和力学行为的影响 [J]. 金属学报, 2009, 45: 285)
[15] Tang D, Wang C M, Tian M, et al. Contrasting study on quality of SUS301L-HT jointsin fiber laser welding and MIG welding [J]. Chin. J. Laser, 2015, 42: 0703003
[15] (唐舵, 王春明, 田曼等. SUS301L-HT不锈钢激光焊接与MIG焊接对比试验研究 [J]. 中国激光, 2015, 42: 0703003)
[16] Chen Y, Wu S K, Xiao R S. Mircostructure and performance of CO2-MIG hybrid welding of SUS301L stainless steel [J]. Chin. J. Lasers, 2014, 41: 0103004
[16] (陈洋, 吴世凯, 肖荣诗. SUS301L不锈钢CO2激光-MIG复合焊接头组织性能研究 [J]. 中国激光, 2014, 41: 0103004)
[17] Zeng Q, Zhu S W, Fu Z H. Effects of different welding processes on microstructure and mechanical properties of SUS301L-MT stainless steel joints [J]. Laser Optoelectronics Progress, 2018, 55: 031405
doi: 10.3788/LOP
[17] (曾强, 朱绍维, 付正鸿. 不同焊接工艺对SUS301L-MT不锈钢接头组织和力学性能的影响 [J]. 激光与光电子学进展, 2018, 55: 031405)
[18] Katayama S, Matsunawa A. Solidification microstructure of laser welded stainless steels [A]. Proceedings of Material Processing Symposium [C]. Laser Institute of America. 1984, 60, doi: 10.2351/1.5057623
[19] Huang F X, Wang X H, Wang W J. Effect of cooling rate on the solidification process of austenitic stainless steel by in-situ observation [J]. J. Univ. Sci. Technol. Beijing, 2012, 34: 530
[19] (黄福祥, 王新华, 王万军. 冷却速率对奥氏体不锈钢凝固过程影响的原位观察 [J]. 北京科技大学学报, 2012, 34: 530)
[20] Wang R P, Lei Y P, Shi Y W. Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet [J]. Opt. Laser Technol., 2011, 43: 870
doi: 10.1016/j.optlastec.2010.10.007
[21] Artinov A, Bachmann M, Rethmeier M. Equivalent heat source approach in a 3D transient heat transfer simulation of full-penetration high power laser beam welding of thick metal plates [J]. Int. J. Heat Mass Transfer, 2018, 122: 1003
doi: 10.1016/j.ijheatmasstransfer.2018.02.058
[22] Li X Y, Wang L J, Yang L J, et al. Modeling of temperature field and pool formation during linear laser welding of DP1000 steel [J]. J. Mater. Proc. Technol., 2014, 214: 1844
doi: 10.1016/j.jmatprotec.2014.03.030
[23] Ramirez A J, Lippold J C. High temperature behavior of Ni-base weld metal: Part II-Insight into the mechanism for ductility dip cracking [J]. Mater. Sci. Eng. A, 2004, 380: 245
doi: 10.1016/j.msea.2004.03.075
[24] Collins M G, Ramirez A J, Lippold J C. An investigation of ductility-dip cracking in nickel-based weld metals-Part III [J]. Weld. J., 2004, 83: 39/S
[25] Guan K, Wang Z M, Gao M, et al. Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel [J]. Mater. Des., 2013, 50: 581
doi: 10.1016/j.matdes.2013.03.056
[26] Wang X L, Deng D W, Yi H L, et al. Influences of pulse laser parameters on properties of AISI316L stainless steel thin-walled part by laser material deposition [J]. Opt. Laser Technol., 2017, 92: 5
doi: 10.1016/j.optlastec.2016.12.021
[27] Zhang Y K, Zhang L, Luo K Y, et al. Effects of Laser Shock Processing on Mechanical Properties of Laser Welded ANSI 304 Stainless Steel Joint [J]. Chin. J. Mech. Eng., 2012, 25: 285
doi: 10.3901/CJME.2012.02.285
[28] Chen J K, Shi Y, Liu J, et al. A study of austenitic stainless steel laser welding process [J]. Appl. Laser, 2015, 35: 335
doi: 10.3788/AL
[28] (陈俊科, 石岩, 刘佳等. 奥氏体不锈钢激光焊接工艺研究 [J]. 应用激光, 2015, 35: 335)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.