武汉工程大学材料科学与工程学院 武汉 430073
中图分类号: TB383
文章编号: 1005-3093(2016)05-0365-07
通讯作者:
收稿日期: 2015-08-4
网络出版日期: 2016-05-25
版权声明: 2016 《材料研究学报》编辑部 《材料研究学报》编辑部
基金资助:
展开
摘要
用六水硝酸铈(Ce(NO3)36H2O)作为铈源, 以聚乙烯吡咯烷酮(PVP)为表面活性剂, 在乙二醇的水溶液中通过水热法制备了单分散、粒径较均一的CeO2纳米空心球。利用傅立叶转换红外分析(FT-IR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、X射线能谱(XPS)、N2等温吸附-解吸及紫外-可见光谱(UV-Vis)来表征CeO2纳米空心球并研究其吸附性能。结果表明, 水热法制备的CeO2空心球是由立方萤石结构的纳米颗粒组装成的介孔中空材料, 孔径分布窄, 尺寸约为3~5 nm, 空心球的直径约为400 nm, 壁厚30 nm左右, 空心球的BET比表面积为76.86 m2g-1。讨论了CeO2空心球的制备机理, 所制备的CeO2空心球对重铬酸钾溶液的吸附率可达到70%, 约为CeO2粉末的3倍。
关键词:
Abstract
Uniform-sized and monodisperse ceria (CeO2) hollow nanospheres were synthesized in a ethylene glycol aqueous solution with cerium nitrate hexahydrate (Ce(NO3)3·6H2O) as cerium sources and polyvinylpyrrolidone (PVP) as surfactant. The synthesized products were characterized by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectrum (XPS), X-ray diffraction (XRD), N2 adsorption-desorption and UV-Vis. The results show that the porous CeO2 hollow nanospheres composed of small nanoparticles with cubic fluorite structure; the average diameter and wall thickness of the CeO2 hollow nanospheres were about 400nm and 30 nm respectively; they have a high specific surface area of 76.86 m2g-1 and BJH pore size about 3~5 nm. On the basis of time-dependent experiment, the relevant formation mechanism was proposed. The ceria hollow nanospheres show an excellent adsorption rate about 70% of heavy metal ions at room temperature for Cr(VI) solutions, which is 3 times higher than that of ceria powder.
Keywords:
稀土化合物是一类重要的无机材料, 由于独特的4f层电子结构和5d空轨道, 使其具有优异的光、电、磁学性能。二氧化铈(CeO2)是使用最广泛的稀土金属氧化物之一, 具有N型半导体性质, 且Ce元素存在Ce3+与Ce4+的价态变化, 使其具有良好的储存和释放氧气的能力[1]。近几年已经通过各种方法成功地制备了各种纳米结构的CeO2, 如纳米颗粒[2] 、纳米棒[3] 、纳米线[4] 、纳米管[5]和纳米空心球[6]等, 纳米空心球因为其独特的中空结构、比表面积大, 在催化剂、发光材料和紫外阻隔材料方面的应用研究已被广泛报道[4, 6], 然而关于CeO2空心球吸附性能的报道却比较少。
已经报道的制备CeO2空心球的方法各有不同, Guo等[7]选用SiO2凝胶为模板, 六水硝酸铈在SiO2表面进行热分解制得CeO2空心球, 该方法制备的CeO2空心球表现出了很强的紫外吸收能力, 可用作防紫外线材料。Chen等[8]以通过乳液聚合的方法制备的聚苯乙烯(PS)微球作为模板, 制备了单分散、粒径均匀的CeO2介孔空心球, 其直径约为190 nm, 壁厚约15 nm, 并对其制备机理进行了分析。Wang等[9]用水热合成的碳球为模板制备了尺寸为150nm的CeO2纳米空心球, 空心球的BET比表面积为144.1m2/g。相对于模板法, 水热合成一步法越来越被人们所关注, 因为其制备工艺简单, 能耗低, 产率高, 但是该方法对反应条件要求高, 产物的形貌与微球的直径很难控制。Liu等[10]用水热法制备了球径为200 nm、壁厚为20~30 nm的介孔-壳结构的CeO2空心球, 研究了反应过程中聚乙烯吡咯烷酮(PVP)和H2O2的用量对空心球形貌和结构的影响。
本文采用水热法制备CeO2纳米空心球, 选用PVP作为表面活性剂, 乙二醇的水溶液作为溶剂, 反应生成的前驱体纳米粒子在表面活性剂作用下层层自组装形成实心球, 由Ostwald熟化机理最后形成粒径均一、单分散的空心球。该方法工艺简单, 易操作。制备出的CeO2纳米空心球对重铬酸钾溶液有良好的吸附效果。
六水硝酸铈(Ce(NO3)3·6H2O, 99.5%), AR, 阿拉丁化学有限公司; 聚乙烯吡咯烷酮(PVP, K-30), AR, 国药集团化学试剂有限公司; 乙二醇(C2H6O2), AR, 国药集团化学试剂有限公司; 冰乙酸(CH3COOH , 99.5%), AR, 国药集团化学试剂有限公司; 甲醇(CH3OH, 99.5%), AR, 上海振兴化工一厂; 无水乙醇(CH3CH2OH, 99.7%), AR, 天津博迪化工有限公司; 氧化铈(CeO2, 99.99%)粉末, AR, 国药集团化学试剂有限公司; 去离子水(H2O), 实验室自制。
取1 g六水硝酸铈, 10 mL去离子水和20 mL乙二醇混合于玻璃烧杯中, 室温下磁搅拌使其混合均匀, 搅拌过程中滴加1 mL冰乙酸, 并将0.8 g PVP缓慢加入到混合溶液中, 使其完全溶解。将混合均匀的溶液转入容积为50 mL的聚四氟乙烯内衬高压反应釜中, 放入烘箱, 180℃反应22 h。反应完成后冷却至室温, 分别用乙醇、甲醇和去离子水离心洗涤两次, 50℃真空干燥, 得到浅灰色粉末前驱体样品。将前躯体粉末在马弗炉中500℃煅烧2 h, 得到浅黄色CeO2空心球粉末。
采用Nicolet 6700型傅立叶红外分析测试仪表征前驱体和煅烧后样品的红外吸收光谱。采用JSM-5510LV型扫描电子显微镜和JEM-2100型透射电子显微镜表征空心球样品的形貌结构和尺寸。采用Bruker D8-Advance型X射线衍射仪表征前驱体和煅烧后样品的晶型。用SAM-800型光电子能谱仪对煅烧后的样品进行表面分析。利用TriStar 3000型比表面积及孔径分析仪, 得到液氮温度下CeO2空心球的BET比表面积和BJH孔径分布。
取100 mL浓度为100 mg/L的重铬酸钾溶液模拟废水, 用甲酸调节溶液pH值。称取一定量的CeO2粉末、水热法制备的前驱体样品以及煅烧后的CeO2空心球分别加入溶液中进行吸附实验。实验过程中始终保持磁力搅拌。定时将一定量的溶液取出, 经离心机离心后取上层清液进行吸光度检测。
采用Agilent 8453型紫外-可见分光光度计, 检测初始溶液的吸光度A0以及吸附后上层清液的吸光度At。采用测定吸收值的方法对溶液的浓度进行定量测定。通过公式(1)计算出吸附率(R)来表示水溶液中Cr(VI)的吸附率。
式中, A0为Cr(VI)初始溶液的吸光度; At为Cr(VI)溶液在t时的吸光度
图1a, b分别为前驱体和500℃煅烧2 h后样品的红外吸收光谱。图1a中位于3483 cm-1处的吸收峰是–OH键的吸收峰, 2928 cm-1对应的是–CH2–、–CH3上的C-H振动吸收峰, 在1563 cm-1和1401 cm-1处对应的是COO–对称与不对称伸缩振动的吸收峰, 786 cm-1处是金属氢氧化物的特征吸收峰, 位于505 cm-1的吸收峰为Ce-O的特征吸收峰, 故水热反应后生成的前驱体不是纯的CeO2, 可能还含有氢氧化铈[Ce(OH)3]和乙酸铈[Ce(CH3COO)3]等物质[1, 4]。图1b中位于3482 cm-1和1618 cm-1处的吸收峰为–OH的伸缩振动和弯曲振动吸收峰, 可能是由于样品在保存过程中吸收了空气中的水分引起。在1382 cm-1处的峰对应的是Ce-O-Ce的伸缩振动峰。位于438 cm-1的吸收峰为Ce-O的伸缩振动峰[11], 与CeO2的标准红外光谱图比对后相符合, 说明煅烧后所得的产物为较纯的CeO2[8]。
图1 前驱体和煅烧后CeO2空心球的FT-IR光谱
Fig.1 FT-IR spectra of the precursor (a) and CeO2 hollow spheres after calcination (b)
图2a, b分别为前驱体样品和煅烧后CeO2空心球的XRD图谱。从图2a可以看到, 水热法制备的前驱体物质不是纯的CeO2, 还出现其他物质的衍射峰, 可能是几种物质的混合相, 与红外测试的结果一致(图1a)。从图2b可知, 样品在500℃下煅烧2 h后出现了非常明显的特征衍射峰。在2θ=28.5°、33.1°、47.5°、56.3°有强烈的衍射峰, 分别对应(111)、(200)、(220)、(311)晶面, 与CeO2的标准衍射卡(JCPDS NO.34-0394)一致, 除此之外还可见(222)、(400)和(331)晶面衍射峰, 由此可以推断出样品是结晶完善的立方萤石结构CeO2。而且衍射峰尖锐, 无杂峰存在, 所以制得的样品结晶度较高[12-14]。
图2 前驱体和煅烧后CeO2空心球的XRD图谱
Fig.2 XRD spectra of the precursor (a) and CeO2 hollow spheres (b)
图3是水热法制备的CeO2空心球样品的扫描电镜(SEM)和透视电镜(TEM)图。如图3a所示, 通过水热合成法成功地制备了单分散、粒径均一的纳米CeO2空心球。其空心球的直径约为400 nm, 球形度完好。从图3b可以看到, 样品为中心部分颜色较浅, 而外层环形颜色较深的中空球, 空心部分直径约为340 nm, 空心球的壁厚约为30 nm。
图3 纳米CeO2空心球的SEM和TEM照片
Fig.3 SEM (a) and TEM (b) images of the obtained ceria hollow spheres
为了研究水热法制备CeO2空心球的机理, 保持其他的条件不变, 分别观察水热反应时间6, 12, 16, 22 h CeO2空心球形貌的变化。从图4a, b可以看到, 反应时间为6 h, 制备的微球是单分散、直径350~400 nm的实心球。当反应时间为12 h时, 从图4c, d可以看到, 制备的CeO2球径增大, 大约在600~700 nm, 球表面没有粘连, 球径比较均匀, 且通过TEM图可以看到制备的微球出现了部分空心结构, 空心部分直径约100 nm。反应时间延长到16 h(图4e, f), 表面出现了很多小的颗粒和粒径不均的小球, 大球的内部颜色较浅, 内部空心部分的直径增大, 但是外部的壁很厚, 而且出现了一些实心的前驱体小球。是由于熟化过程在此阶段开始, 内部的纳米粒子通过孔隙进入到溶液中, 在溶液中再重组形成实心小球[6, 10]。继续增加反应时间到22 h, 从图4g, h可以看到, 制备的样品球径均一、单分散、球直径约400 nm, 球中心部分颜色很浅, 外部环形颜色较深, 说明制备的样品为空心球, 球内部空心部分直径约340 nm, 球形比较规整, 球壁厚约30 nm。
图4 不同反应时间制备的CeO2样品的SEM和TEM像
Fig.4 SEM and TEM images of the obtained CeO2 samples collected at different reaction time (a, b) 6 h; (c, d) 12 h; (e, f) 16 h; (g, h) 22 h
图5a, b分别为CeO2空心球的XPS宽扫描谱和Ce3d扫描谱。从图5a可以看出, 在XPS全谱中存在Ce3d峰、O1s峰和C1s峰, 除此之外未出现其他元素峰。其中C1s来自用于校正电子结合能的污染碳, 由此证明产物中只存在Ce元素和O元素。图5b是CeO2空心球的Ce3d谱, 其中, 在884.2 eV和889.8 eV处的峰对应于Ce4+(Ce3d 5/2)的峰位置, 900.6 eV和918.2 eV处的峰对应于Ce4+(Ce3d 3/2)的峰位置, 证明了样品中Ce主要以+4价存在[6, 10, 11]。而在图5a中529.3 eV处出现O的特征峰, 表明样品中的氧为O2-, 进一步证明实验所得产物组成为CeO2[15]。
图5 CeO2空心球的XPS全谱和Ce3d谱
Fig.5 XPS wide spectrum (a) and Ce3d spectrum (b) of CeO2 hollow nanospheres
图6a, b分别为CeO2空心球的N2吸附-解吸等温曲线和通过BJH方法计算得到的相对应的孔径分布曲线图。从CeO2空心球的N2吸附-解吸等温曲线, 得到CeO2空心球的BET比表面积为76.86 m2g-1。图6b为采用BJH方法获得的CeO2空心球孔径分布曲线, 可以看出CeO2空心球为介孔结构, 孔径主要分布为3~5 nm, 孔径分布均匀。从图6可知, 水热法制备的CeO2空心球为比表面积大的介孔材料[14-16]。
图6 CeO2空心球的N2吸附-解吸等温曲线以及BJH孔径分布曲线
Fig.6 N2 adsorption-desorption isotherm of the CeO2 hollow spheres (a) and the corresponding BJH pore size distribution curve (b)
根据已经报道的一些文献, 结合得到的实验数据, 对水热法制备CeO2纳米空心球的机理进行分析。其机理如图7所示, Ce3+在乙二醇的水溶液中高温高压反应氧化生成CeO2, 同时Ce3+与水分解出的OH–以及冰乙酸中CH3COO–反应生成Ce(OH)3和Ce(CH3COO)3等前驱体纳米粒子[1, 4, 8]。溶液中的表面活性剂吸附在前驱体纳米粒子的表面, 由于各向同性生长, 纳米粒子在表面活性剂的作用下层层自组装形成实心球, 因为此时所需的活化能最低[1, 6]。在形成球的过程中, 实心球内部的粒子会比球外部的尺寸小, 结晶度低, 密度也会小, 基于Ostwald熟化机理, 内部的粒子通过孔隙向球外转移, 就出现了内部中空结构。向外转移的小粒子在溶液中表面活性剂的作用下继续生长再结晶, 经历大量重排, 最后形成内部空心的结构。随着反应时间的延长, 就会形成粒径均一、单分散的纳米空心球[10, 17-19]。经过高温煅烧后处理, 前驱体空心球变成结晶完善, 排列紧密, 纯的立方萤石结构的CeO2空心球。
图7 CeO2纳米空心球的制备原理图
Fig.7 Schematic illustration of the formation of the CeO2 hollow spheres
由图8可以看出, 吸附作用开始阶段(0~10 min), 对重铬酸钾的吸附效果很明显, 在30 min左右达到吸附平衡。延长吸附时间, 吸附率增加变慢, 再继续延长吸附时间, 吸附率不再增加。对比图8中a, b, c曲线可以看到, CeO2粉末对重铬酸钾的吸附率在接触300 min后达到21%, 没有煅烧处理的前驱体样品的吸附率大约为23%, 而经过煅烧处理后的CeO2空心球对重铬酸钾的吸附率可达到70%, 约为CeO2粉末吸附率的三倍。其机理如Cao等[12]报道, 水热法制备的CeO2空心球具有比较大的比表面积和有序的介孔结构, 对重铬酸钾具有较强的吸附能力。Shen等[14]和Xu等[20]报道, 经过煅烧处理后得到的CeO2氧化物表面金属离子拥有较小的配位数, 表现为路易斯酸, 在水溶液中容易与水分子形成配位, 由于水分子的离解性化学吸附, 导致氧化物表面羟基化。同时在水溶液中以阴离子形式存在的Cr(VI)与水合氧化物的正电活性中心产生电性吸附, 表面羟基离子被置换, 生成离子对配合物或络合物, 使得吸附性有非常明显的提升, 从而将重铬酸钾从水中分离、去除, 达到很好的吸附效果。
图8 样品在不同时间对Cr(VI)溶液的吸附率曲线
Fig.8 The absorption rate curve of Cr(VI) solutions at different time (a) CeO2 powder, (b) the precursor, and (c) CeO2 hollow spheres
通过水热法成功地制备了单分散、粒径均一的CeO2空心球, 空心球的直径约400 nm, 壁厚约30 nm。水热法制备工艺简单, 原料简单易得, 产物为纯净立方萤石结构的介孔CeO2空心球。由于较大的比表面积和多孔的结构, 以及CeO2与重金属离子的静态电吸引和离子交换, 使得CeO2空心球对重铬酸钾溶液的吸附率达到70%, 约为CeO2粉末的3倍。
The authors have declared that no competing interests exist.
[1] |
A rapid solvothermal synthesis of cerium oxide hollow spheres and characterization , |
[2] |
Formation of catalytically active CeO2 hollow nanoparticles guided by oriented attachment , |
[3] |
Strain and architecture-tuned reactivity in ceria nanostructures; enhanced catalytic oxidation of CO to CO2 , |
[4] |
Morphology control of cerium oxide particles synthesized via a supercritical solvothermal method , |
[5] |
Preparation and CO conversion activity of ceria nanotubes by carbon nanotubes templating method ,
<h2 class="secHeading" id="section_abstract">Abstract</h2><p id="">Ceria nanotubes with high CO conversion activity by means of carbon nanotubes as removable templates in the simple liquid phase process were fabricated under moderate conditions. The pristine CNTs were first pretreated by refluxing in a 30% nitric acid solution at 140 °C for 24 h, then dispersed in an ethanolic Ce(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O solution with ultrasonic radiation at room temperature for 1 h. Under vigorous stirring, NaOH solution was added drop by drop into the above ethanolic solution until the pH value was 10. The product was collected and repeatedly washed with ethanol and on drying at 60 °C, the CeO<sub>2/</sub>CNT composites were obtained. Then, the as-prepared composites were heated at 450 °C in an air atmosphere for 30 min to remove CNTs. The ceria nanotubes were characterized by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and X-Ray Photoelectron Spectrum (XPS). The results showed that the ceria nanotubes were polycrystalline face-centered cubic phase and were composed of lots of dense ceria nanoparticles. The diameter of ceria nanotubes was about 40–50 nm. Catalytic activity of the product for CO oxidation was carried out at the region of 30–300 °C in a U-shaped quartz reactor with feeding about 0.15 g of the catalyst, which was loaded on Al<sub>2</sub>O<sub>3</sub> carrier. The inlet gas composition was 1.0% CO and 28% O<sub>2</sub> with N<sub>2</sub> as balance, and the rate of flow was kept at 40 ml/min. The catalytic products were analyzed by gas chromatography. The as-prepared CeO<sub>2</sub> nanotubes showed higher CO oxidation activity, which indicated that the morphology of ceria products affected the catalytic performance. The ceria nanotubes supported on Al<sub>2</sub>O<sub>3</sub> demonstrated that conversion temperature for CO oxidation to CO<sub>2</sub> was lower than that for bulk catalysts.</p>
|
[6] |
Fabrication of monodisperse CeO2 hollow spheres assembled by nano-octahedra , |
[7] |
A simple method to controlled synthesis of CeO2 hollow microspheres ,
<p id="">CeO<sub>2</sub> hollow microspheres have been synthesized by hydrothermal decomposition reaction of Ce(NO<sub>3</sub>)<sub>3</sub> on the surfaces of silica microspheres. The shell thickness of CeO<sub>2</sub> hollow microspheres can be controlled from 20 to 50 nm by adjusting the concentration of Ce(NO<sub>3</sub>)<sub>3</sub> in the reaction solution. The high UV absorption of CeO<sub>2</sub> hollow microspheres indicates that this material is suitable as a UV-blocking material.</p>
|
[8] |
Facile fabrication of porous hollow CeO2 microspheres using polystyrene spheres as templates , |
[9] |
Porous ceria hollow microspheres: synthesis and characterization , |
[10] |
Mesoporous-shelled CeO2 hollow nanospheres synthesized by a one-pot hydrothermal route and their catalytic performance , |
[11] |
Yolk-shell Au@CeO2 microspheres: synthesis and application in the photocatalytic degradation of methylene blue dye , |
[12] |
Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis , |
[13] |
O/W/O double emulsion-assisted synthesis and catalytic properties of CeO2 hollow microspheres ,
<h2 class="secHeading" id="section_abstract">Abstract</h2><p id="">CeO<sub>2</sub> hollow microspheres have been fabricated through a simple thermal decomposition of precursor approach. The precursor with an average size of 10 μm was prepared in a reverse microemulsions containing Ce(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O and CO(NH<sub>2</sub>)<sub>2</sub> at 160 °C. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscope (TEM), selected area electron diffraction (SAED) and scanning electron microscopy (SEM). The possible formation mechanism of hollow spheres was discussed. In addition, the CeO<sub>2</sub> hollow microspheres modified glassy carbon electrode exhibit excellent sensing performance towards methyl orange, which provide a new application of CeO<sub>2</sub> hollow spheres. The catalytic activity of CeO<sub>2</sub> hollow spheres on the thermal decomposition of ammonium perchlorate (AP) also was investigated by TGA. The catalytic performance of CeO<sub>2</sub> hollow spheres is superior to that of commercial CeO<sub>2</sub> powder.</p><h2 class="secHeading" id="section_gabs">Graphical abstract</h2><p><dl class="figure" id="gabs1"><dt style="height:155px;width:208px;"><img class="figure large" id="gabsImg" border="0" alt="Full-size image (15K)" src="http://ars.els-cdn.com/content/image/1-s2.0-S1293255810002116-fx1.jpg" data-thumbsrc="http://ars.els-cdn.com/content/image/1-s2.0-S1293255810002116-fx1.sml"></dt><dd id="labelCaptiongabs1"><p class="caption"><!--caption--></p></dd></dl>
|
[14] |
Self-template hydrothermal synthesis of CeO2 hollow nanospheres , |
[15] |
Mesoporous CeO2 hollow spheres prepared by Ostwald Ripening and their environmental applications , |
[16] |
One-pot hydrothermal synthesis of CeO2 hollow microspheres , |
[17] |
Facile one-step synthesis of porous ceria hollow nanospheres for low temperature CO oxidation , |
[18] |
Inward template synthesis of intact hollow spheres ,
A facile and general one-step approach is presented to synthesize hollow spheres with varied composition by an aerosol-assisted solvent evaporation process. The monomer of ethyl-2-cyanoacrylatemide contained in the aerosol droplets can form an outer shell by a fast polymerization around the droplets. Materials inside the droplets further grow inwardly against onto the interior surface of the first shell forming another shell forming composite hollow spheres. The hollow spheres are derived by dissolution of the outer shell, therefore the intact shell can be well preserved. Many approaches can be exploited forming the second shell for example sol-gel process of oligomers and phase separation from polymer solutions. Microstructure of the hollow spheres can be tuned from smooth to porous. The methodology is general. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
|
[19] |
Benign synthesis of ceria hollow nanocrystals by a template-free method , |
[20] |
Enhanced arsenic removal from water by hierarchically porous CeO2-ZrO2 nanospheres: role of surface- and structure-dependent properties , |
/
〈 |
|
〉 |