Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (2): 208-212    DOI:
论文 Current Issue | Archive | Adv Search |
Preparation of the Shape–Controlled Rutile Nano–TiO2 by Low Temperature Hydrothermal Method
ZHOU Limin 1;2 ; LIANG Xizhen1 ; CAI Junqing 2
1.Key Laboratory of Nuclear Resources and Environment of Ministry of Education; East China Institute of Technology; Fuzhou 344000
2.School of Chemistry and Chemical Engineering; Tianjin University; Tianjin 300072
Cite this article: 

ZHOU Limin LIANG Xizhen CAI Junqing. Preparation of the Shape–Controlled Rutile Nano–TiO2 by Low Temperature Hydrothermal Method. Chin J Mater Res, 2010, 24(2): 208-212.

Download:  PDF(761KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The pure rutile phase nano–TiO2 was prepared by low temperature hydrothermal method using titanium tetrachloride as reaction precursors. The effects of reaction temperature and reaction time on the microstructure and the morphology of the TiO2 samples were investigated. The X–ray diffraction patterns showed that all of the TiO2 samples were pure rutile phase. The average crystallite size was found  to vary in the range of 4.0–11.5 nm. Fourier transform infrared spectra and thermogravimetry analysis showed that the nano–TiO2 samples have surface hydroxyl group and surface adsorbed water. Transmission electron microscopy analysis showed that the morphology and average size of the synthesized rutile nano– TiO2 were strongly effected by both hydrothermal reaction temperature and time. The rutile nano–TiO2 shows a similar shuttle–like morphology and were bunched together at the reaction temperature of 60–80 ,  however, at the reaction temperature above 120 they tended to resolve into spherical particles andattained larger sizes. The morphology of the rutile nano–TiO2 samples changed form rod–like to shuttle– like and spherical–like with increase of reaction time from 4 h to 40 h.

Key words:  inorganic non–metallic materials        rutile TiO2       low temperature hydrothermal method       shape       reaction temperature        reaction time     
Received:  12 October 2009     
Fund: 

Supported by Science & technology Project of Education Department of Jiangxi No.GJJ10494, Project in Science & technology pillar program of Jiangxi No.2009BSB08600, and ECIT Open Fundation of Key Laboratory of Nuclear Resources and Environment No.090910.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I2/208

1 HE Jinming, PENG Xuhong, LU Huihong, ZHAO Jihua, SHEN Weiguo, Synthesis of rutile nanoparticles by microemulsion method at low temperature, Chinese Journal of Inorganic Chemistry, 24(2), 191(2008) (贺进明, 彭旭红, 吕辉鸿, 赵继华, 沈伟国微乳液法低温制备纳米金红石型二氧化钛的研究, 无机化学学报,  24(2), 191(2008)) 2 S.T.Aruna, S.Tirosh, A.Zaban, Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers, J. Mater. Chem., 10(10), 2388(2000) 3 Q.Zhang, L.Gao, J.Guo, Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl. Catal. B Environ., 26(3), 207(2000) 4 F.Pedraza, A.Vazquez, Obtention of TiO2 rutile at room temperature through direct oxidation of TiCl3, J. Phys. Chem. Solids, 60(4), 445(1999) 5 K.N.Kumar, K.Keizer, A.Burggraaf, Stabilization of the porous texture of nanostructured titanic by avoiding a phase transformation, J. Mater. Sci. Lett., 13(1), 59(1994) 6 Z.L.Tang, J.Y.Zhang, Z.Cheng, Z.T.Zhang, Synthesis of nanosized rutile TiO2 powder at low temperature, Mater. Chem. Phys., 77(2), 314(2002) 7 S.Yin, R.Li, Q.He, T.Sato, Low temperature synthesis of nanosize rutile titania crystal in liquid media, Mater. Chem. Phys., 75(1), 76(2002) 8 S.Yin, K.Ihara, Y.Alta, M.Komatsu, T.Sato, Visible–light induced photocatalytic activity of TiO2−xAy(A=N,S) prepared by precipitation route, J. Photochem. Photobio A, 179(1), 105(2006) 9 LONG Zhen, HUAN Ximing, ZHONG jiacheng, GONG ChuQing, ZAN Ling, LUO Qirong, WANG Jianbo, Preparation and characterization of nanosize rutile titania at low temperature, Journal of Functional Materials, 35(3), 311(2004) (龙 震, 黄喜明, 钟家柽, 龚楚清, 昝 菱, 罗其荣, 王建波, 纳米金红石型二氧化钛的低温制备及表征, 功能材料,  35(3), 311(2004)) 10 ZHOU Zhongcheng, RUAN Jianming, ZOU Jianpeng, LI Songlin, FU Naike, Preparation of nanosized rutile TiO2 powders by direct hydrolysis of TiCl4, Chinese Journal of Rare Metals, 30(5), 653(2006) (周忠诚, 阮建明, 邹俭鹏, 李松林, 符乃科, 四氯化钛低温水解直接制备金红石型纳米二氧化钛, 稀有金属, 30(5), 653(2006)) 11 X.Q.Chen, G.B.Gu, H.B.Liu, Z.N.Cao, Synthesis of nanocrystalline TiO2 particles by hydrolysis of titanyl organic compounds at low temperature, J. Am. Ceram. Soc., 87(6), 1035(2004)
[1] HAN Ying, LI Sida, CAO Yundong, LI Shujun, LU Yanjun, SUN Baoyu. Influence of Shape Factor on Mechanical and Electrical Properties of Cu-W Composites with Micro-oriented Structure[J]. 材料研究学报, 2022, 36(8): 571-578.
[2] SUN Kuishan, LI Jun, MENG Xianglong, CAI Wei. Effect of Annealing Temperature on Microstructure and Martensitic Transformation of Cold Rolled Ti-13V-3Al-0.5Cu Shape Memory Alloy[J]. 材料研究学报, 2020, 34(10): 721-729.
[3] Jie ZHANG, Fang CHEN, Xiaoyan MA. Synthesis and Property of Proton Exchange Membrane Based on Tadpole-type POSS Block Copolymer[J]. 材料研究学报, 2017, 31(4): 314-320.
[4] Xing ZHOU, Bin HU, Wenqiang XIAO, Hao JIANG, Lijun ZHANG, Zhengjun WANG, Hailai LIN, Jun BIAN, Xinwei ZHAO. Preparation and Properties of Composites of Polyvinyl Alcohol Grafted Graphene Oxide/thermoplastic Polyurethane[J]. 材料研究学报, 2017, 31(11): 874-880.
[5] Jie ZHANG,Fang CHEN,Xiaoyan MA,Beirong SHANG,Kun SUN. Proton Exchange Membrane Based on the Star Shaped Block Copolymer with Well Connected Ionic Domain and Conductivity[J]. 材料研究学报, 2015, 29(5): 337-345.
[6] Jie WU,Lei XU,Bin LU,Yuyou CUI,Rui YANG. Preparation of Ti2AlNb Alloy by Powder Metallurgy and Its Rupture Lifetime[J]. 材料研究学报, 2014, 28(5): 387-394.
[7] Jing BAI,Xinli WANG,Jianglong GU,Yanbo LI,Xiang ZHAO,Liang ZUO. Martensitic Transformation and Crystal Structure of Ni-Fe-Ga Ferromagnetic Shape Memory Alloys[J]. 材料研究学报, 2014, 28(12): 881-886.
[8] LI Zhao JIANG Yuanru ZHAO Xicheng ZHAO Yajuan. Controlled Synthesis of α-Al2O3 of Different Shapes via the Hydrothermal-Pyrolysis Method[J]. 材料研究学报, 2013, 27(4): 375-379.
[9] ZHANG Jingxian HONG Qiuhong SUN Xuetong ZHANG Xinping. Preparation and Properties of Porous TiO2/HA/TiO2 Composite Coating[J]. 材料研究学报, 2012, 26(6): 572-576.
[10] ZHANG Wenjie CHEN Jinlei WANG Hong HE Hongbo. Effects of Calcination Temperature on the Photocatalytic Activity of In–TiO2 Nano–material[J]. 材料研究学报, 2012, 26(6): 561-566.
[11] FANG Yihang, YANG Qinghua, LI Hongwei, WANG Huanping, MA Hongping, XU Shiqing. Low Temperature Sintering and Performance of CBS/Al2O3 Glass–Ceramic Doped With Li2CO3[J]. 材料研究学报, 2012, 26(5): 515-520.
[12] LIN Xiaoyan YANG Weihua YANG Wutao WANG Meiqing. Preparation and Characterization of Ti-Supported PbO2 Electrode Doped with Rare Earth Er[J]. 材料研究学报, 2012, 26(4): 367-371.
[13] GAO Jiacheng WU Shufang YANG Xiaodong CHANG Xin. Effect of Pre–oxidation Powders on Sintering Properties of Uranium Dioxide Pellets[J]. 材料研究学报, 2012, 26(3): 279-283.
[14] LIU Jia NI Wen YU Miao. Preparation of High–strength Concrete by Using Fly Ash and Iron Ore Tailings as Major Raw Materials[J]. 材料研究学报, 2012, 26(3): 295-301.
[15] WEI Xiaoqing NI Xingyuan SHEN Jun ZU Guoqing ZHANG Zhihua DU Ai. Synthesis of Thermal Insulation Material Alumina Aerogels and Thermal Properties[J]. 材料研究学报, 2012, 26(3): 261-266.
No Suggested Reading articles found!