Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (4): 241-254    DOI: 10.11901/1005.3093.2015.111
  本期目录 | 过刊浏览 |
新型高温超导材料研究进展
闻海虎
南京大学物理学院 固体微结构国家重点实验室 人工微结构科学与技术协同创新中心 超导物理和材料研究中心 南京 210093
Development of Research on New High Temperature Superconductors
Haihu WEN
Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
引用本文:

闻海虎. 新型高温超导材料研究进展[J]. 材料研究学报, 2015, 29(4): 241-254.
Haihu WEN. Development of Research on New High Temperature Superconductors[J]. Chinese Journal of Materials Research, 2015, 29(4): 241-254.

全文: PDF(4128 KB)   HTML
摘要: 

超导自从1911年被发现以来, 研究对象经历了从简单金属, 到合金, 再到复杂化合物, 超导转变温度也逐渐提升, 目前已经提升到164 K(高压测量)。在研究新型高温超导材料的过程中, 对超导物理的理解也不断更新。在超导领域取得巨大成功的Bardeen-Cooper-Schrieffer理论, 似乎在一些新型的非常规超导体中不再适用, 因此非常规超导机理的理解也面临重大突破。本文将简单介绍目前发现的三类高温超导体: 铜氧化物超导体, 铁基超导体和二硼化镁超导体。结合目前研究中的一些经验, 对如何寻找新型超导体提出展望。

关键词 超导体超导电性库柏对探索新型超导体    
Abstract

Since discovered in 1911, the superconductors have evolved from single element, alloy to complex compounds with multiple elements.So far the proved highest superconducting transition temperature is 164 K (under pressure). In the long time of investigation on superconductivity, the understanding on the superconducting mechanism has been promoted significantly. The BCS theory which was greatly successful in describing the conventional superconductivity now is challenged by the new phenomena in some unconventional superconductors.Therefore the investigation of high temperature superconductivity mechanism is also at the dawn of major breakthrough. In this short overview, we will give a survey on the three families of high temperature superconductors, namely cuprates, iron based superconductors. Based on the experience accumulated in past decades, we propose some ideas in exploring high temperature superconductors.

Key wordssuperconductivity    superconductivity mechanism    cooper paring    exploration of new superconductors
收稿日期: 2014-08-12     
基金资助:* 国家自然科学基金11034011/A0402, 国家重点基础研究发展计划2011CBA00102和2012CB821403及高校985计划资助。
图1  超导体的转变温度随被发现的时间的关系
Superconducting Families Typical Superconductors Highest Tc Notes
Metal and alloy superconductor Pb, Nb, Nb3Sn,Nb3Ge, V3Si, NbTi, etc. Nb3Ge (Tc=23.2 K) Varity structure Pairing by electron-phonon coupling
Inter-metallic superconductor MgB2 , Mo3S4,PbMo6S8, SmRh4B4,YNi2B2C, etc. MgB2 (Tc=40 K) Varity structure Pairing mainly by electron-phonon coupling
Heavy Fermion superconductor CeCu2Si2, UBe13, UPt3, CeNi2Ge2, CeCoIn5, Pu-based, etc. Pu-based (Tc=20 K) Vicinity of AF order, hybridization of d- and f-electrons
Cuprate superconductor La2-xSrxCuO4, YBa2Cu3O7, Bi2Sr2CaCu2O8,Bi2Sr2Ca2Cu3O12,HgBa2Ca3Cu4O12, etc. Tetragonal or orthorhombic, layered HgBa2Ca2Cu3O9-d (Tc=164 K, HP) Vicinity of AF order, non-Fermi liquid in the normal state
Iron based superconductors FeAs-based and FeSe-based superconductors Tetragonal or orthorhombic,layered SmFeAsO1-xFx (Tc=55 K) Vicinity of AF order, moderate correlation, multiband or multi-orbital
Organic superconductors k-(BEDT-TTF)2Cu(NCS)3, etc. k-(BEDT-TTF)2Cu(NCS)3 (Tc=10.4 K) Vicinity of AF order, moderate correlation
表1  超导体的简单分类和每个系列的最高温度
图2  几种铜氧化物超导体立体结构(A)和CuO2的平面结构图(B)[6]
图3  以Hg系为代表的, 每个晶胞中含有1层, 2层和3层CuO2面的三种超导体结构图[6]
图4  铜氧化物高温超导体电子态相图
图5  巡游电子通过交换反铁磁涨落形成配对的物理图像。正方形的框显示铜氧化物超导体的布里渊区
图6  高温超导体混合态相图图示。在很高的温度磁通系统会出现固态向液态的转变。低磁场下是Meissner态。中磁场区域是布拉格磁通玻璃区域, 其融化是一级融化(FOT, First-Order-Melting)
图7  REBa2Cu3O7-d (REBCO, RE为Y或者稀土元素)和Bi2Sr2CaCu2O8 (Bi-2212) 和Bi2Sr2Ca2Cu3O12 (Bi-2223) 材料本征不可逆磁场随温度的变化[20]
图8  以REBa2Cu3O7-d (RE=Y和 Gd, Sm, Nd等稀土元素)为基础的二代带材制备示意图
图9  LaFeAsO和BaFe2As2结构示意图
图10  目前铁基超导体所发现的几个主要结构体系和相应的超导转变温度
图11  铁基超导体与其他超导体系上临界磁场的比较[45]
图12  二硼化镁超导体的结构图和顶视图
图13  二硼化镁超导体的费米面
图14  铜氧化物和铁基超导电子态相图的比较
1 Poole C P, Handbook of Superconductivity, New York: Academic Press, 2000
2 J. G. Bednorz, K. A. Müller,Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys., 64(2), 189(1986)
3 ZHAO Zhongxian, CHEN Liquan, YANG Qiansheng, et al., Chinese Science Bulletin, 6(32), 412(1987)
3 (赵忠贤, 陈立泉, 杨乾声等, Ba-Y-Cu 氧化物液氮温区的超导电性, 科学通报, 6(32), 412(1987))
4 M. K. Wu, J. R. Ashburn, C. J. Torng,et al., Superconductivity at 93K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Phys. Rev. Lett., (58), 908(1987)
5 ZHOU Wuzong, LIANG Weiyao, Fundamental Research in High Tc Superconductivity (Shanghai: Shanghai Science and Technology Press , 1996)
5 (周午纵, 梁维耀, 高温超导基础研究 (上海: 上海科学技术出版社, 1996))
6 D. J. Scalapino,A common thread: The pairing interaction for unconventional superconductors, Rev. Mod. Phys., (84), 1383(2001)
7 D. M. Newns, C. C. Tsuei,Fluctuating Cu-O-Cu bond model of high-temperature superconductivity, Nature Phys., (3), 184(2007)
8 T. Timusk, B. Statt,The pseudogap in high-temperature superconductors: an experimental survey, Rep. Prog. Phys., 62(1), 61(1999)
9 V. J. Emery, S. A. Kivelson,Importance of phase fluctuations in superconductors with small superfluid density, Nature, (374), 434(1995)
10 Z. A .Xu, N. P . Ong, Y. Wang, et al., Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2-xSrxCuO4, Nature, (406), 486(2000)
11 H. H. Wen, G. Mu, H. Luo, et al., Specific-heat measurement of a residual superconducting state in the normal state of underdoped Bi2Sr2?xLaxCuO6+δ cuprate superconductors, Phys. Rev. Lett., 2009, (103), 067002
12 Lee P A,Nagaosa N, Wen X G, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys., 2006, (78), 17
13 P. W. Anderson, Personal history of my engagement with cuprate superconductivity,1986-2010.Int. J. Mod. Phys. B, (25), 1(2011)
14 Kawakami T, Shibauchi T, Terao Y, et al., Evidence for universal signatures of zeeman-splitting-limited pseudogaps in Superconducting electron- and hole-doped cuprates, Phys. Rev. Lett., (95), 017001(2005)
15 C. C. Tsuei, J. R. Kirtley,Pairing symmetry in cuprate superconductors, Rev. Mod. Phys., (72), 969(2000)
16 H. F. Fong, B. Keimer, P .W. Anderson, et al., Phonon and magnetic neutron scattering at 41 meV in YBa2Cu3O7, Phys. Rev. Lett., (75), 316(1995)
17 A. Lanzara, P. V. Bogdanov, X. J. Zhou, et al., Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors, Nature, (412), 510(2001)
18 G. Blatter, V. M. Feigel’man, V. B. Geshkenbein, et al., Vortices in high-temperature superconductors, Rev. Mod. Phys., (66), 1125(1994)
19 WEN Haihu,Flux dynamics and vortex phase diagram of cuprate super-conductors (I, II), Physics, 35(1, 2), 16, 111(2006)
19 (闻海虎, 高温超导体磁通动力学和混合态相图(I, II), 物理, 35(1, 2), 16, 111(2006))
20 D. C. Larbalestier, J. Jiang, U. P. Trociewitz, et al., Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T, Nature Materials, (13), 375(2014)
21 Y. Kamihara, T. Watanabe, M. Hirano, et al., Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05-0.12) with Tc = 26 K, J. Am. Chem. Soc., 130(11), 3296(2008)
22 X. H. Chen, T. Wu, G. Wu, et al., Superconductivity at 43 K in SmFeAsO1-xFx, Nature, (453), 761(2008)
23 Z. A. Ren, W. Lu, J. Yang, et al., Superconductivity at 55K in iron-based F-doped layered quaternary compound Sm[O1-xFx]FeAs, Chin. Phys. Lett., (25), 2215(2008)
24 De La Cruz C, Q. Huang, J .W. Lynn, et al., Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems, Nature, (453), 899(2008)
25 Mazin I I, Singh D J, Johannes M D, et al., Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1?xFx, Phys. Rev. Lett., 101, 057003(2008)
26 K. Kuroki, S. Onari, R. Arita, et al., Unconventional pairing originating from the disconnected fermi surfaces of superconducting LaFeAsO1?xFx, Phys. Rev. Lett., (101), 087004(2008)
27 H. Ding, P. Richard, K. Nakayama, et al., Observation of fermi-surface dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2.EPL, 83(4), 47001(2008)
28 T. Hanaguri, S. Niitaka, K. Kuroki, et al., Unconventional s-wave superconductivity in Fe (Se, Te), Science, 328(5977), 474(2010)
29 A. D. Christianson, E. A. Goremychkin, R. Osborn, et al, Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering, Nature, (456), 930(2008)
30 H.Yang, Z.Wang, D.Fang, et al., In-gap quasiparticle excitations induced by non-magnetic Cu impurities in Na(Fe0.96Co0.03Cu0.01)As revealed by scanning tunnelling spectroscopy, Nature Communications, (4), 2749(2013)
31 J. P. Hu, H.Ding,Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Scientific Reports, (2), 381(2012)
32 S. Onari, H. Kontani,Violation of anderson’s theorem for the sign-reversing s-wave sate of iron-pnictide superconductors, Phys. Rev. Lett., (103), 177001(2009)
33 H. H. Wen,Developments and perspectives of iron-based high-temperature superconductors, Adv. Mat., 20(19), 3764(2008)
34 C. W. Chu,High-temperature superconductivity: Alive and kicking, Nature Phys., (5), 787(2009)
35 Z. A. Ren, Z. X. Zhao,Research and prospects of iron-based superconductors, Adv. Mat., 21(45), 4584(2009)
36 H. H. Wen,S, L. Li, Materials and novel superconductivity in iron pnictide superconductors, Annu. Rev. Cond. Mat.Phys., (2), 121(2011)
37 G. R. Stewart,Superconductivity in iron compounds, Rev. Mod.Phys., (83), 1589(2011)
38 P. J. Hirschfeld, M. M. Korshunov, I. I. Mazin,Gap symmetry and structure of Fe-based superconductors, Rep. Prog. Phys., 74(12), 124508(2011)
39 Q. Y. Wang, Z. Li, W. H. Zhang, et al., Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3, Chin. Phys. Lett., 29(3), 037402(2013)
40 S. L. He, J. F. He, W. H. Zhang, et al., Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films, Nature Materials, 12(7), 605(2013)
41 S. Tan, Y. Zhang, M. Xia, et al., Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films, Nature Materials, 12(7), 634(2013)
42 W. H. Zhang, Y. Sun, J. S. Zhang, et al., Direct observation of high-temperature superconductivity in one-unit-cell FeSe films, Chin. Phys. Lett., 31(1), 017401(2014)
43 W. Si, S. J. Han, X. Shi, et al., High current superconductivity in FeSe0.5Te0.5 coated conductors at 30 tesla, Nature Comm., 4, 1347(2013)
44 X. P. Zhang, C. Yao, H. Lin, et al., Realization of practical level current densities in Sr0.6K0.4Fe2As2 tape conductors for high-field applications, Appl. Phys. Lett., 104, 202601(2014)
45 C. Tarantini, A. Gurevich, J. Jaroszynski, et al., Significant enhancement of upper critical fields by doping and strain in iron-based superconductors, Phys. Rev. B, 84, 184522(2011)
46 J. Nagamatsu, N. Nakagawa, T. Muranaka, et al., Superconductivity at 39 K in magnesium diboride, Nature, (410), 63(2001)
47 H. J. Choi, D. Roundy, H. Sun, et al., The origin of the anomalous superconducting properties of MgB2, Nature, (418), 758(2002)
[1] 赵万里, 索红莉, 刘敏, 马麟, 戴银明, 张子立. 用扩散法制备MgB2块材的研究进展[J]. 材料研究学报, 2021, 35(6): 411-418.
[2] 方明豹; 徐政; 方明虎 . EuSr2RuCu2-xZnxO8中Zn对Cu的替代效应[J]. 材料研究学报, 2002, 16(5): 458-462.
[3] 方明豹; 徐政; 崔玉建; 方明虎 . EuSr2RuCu2O8的超导电性和磁性[J]. 材料研究学报, 2001, 15(6): 643-648.
[4] 邢玉涛; 王永忠; 乔桂文 . 熔融织构Y{1-x}Nd{x}Ba2Cu3O{7-y}的磁通钉扎[J]. 材料研究学报, 2001, 15(1): 117-119.
[5] 陈金玉; 阳宗全; 蔡敏; 高明; 郭敬东 ; 周本濂 . Bi系高温超导体的能量吸收及反常热膨胀[J]. 材料研究学报, 1999, 13(2): 179-182.
[6] 陈金玉;郭敬东;周本濂. Bi系高T_c超导体动态热膨胀反常行为理论初探[J]. 材料研究学报, 1998, 12(2): 159-162.
[7] 魏旺水;罗乐;张永红;龚尚敏;章岚;胡素辉. 熔融织构 YBa_2Cu_3O_x 样品的制备工艺、结构特性及物理性能[J]. 材料研究学报, 1992, 6(6): 491-494.
[8] 李国勋;黄爱琴;马淑兰;李国斌;余忠勤. YBa_2Cu_3O_(7-y)超导体的热稳定性[J]. 材料研究学报, 1989, 3(4): 343-347.
[9] 黄爱琴;李国勋;马淑兰;李国斌;余忠勤. YBa_2Cu_3O_(7-y)超导体合成机理[J]. 材料研究学报, 1989, 3(4): 338-342.
[10] 潘国强;何振辉;夏健生;张酣;钱逸泰;陈祖耀;刘双怀;张其瑞. YBa_2Cu_3O_x(6[J]. 材料研究学报, 1989, 3(3): 242-244.