Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (5): 449-454    
  研究论文 本期目录 | 过刊浏览 |
18Cr10NiNb耐热钢析出相的热力学计算和平衡相分析
于鸿垚, 董建新, 谢锡善
北京科技大学材料科学与工程学院 北京 100083
Thermodynamic Calculation and Analysis on Precipitated Phases in 18Cr10NiNb Heat--resistant Steel
YU Hongyao, DONG Jianxin, XIE Xishan
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

于鸿垚 董建新 谢锡善. 18Cr10NiNb耐热钢析出相的热力学计算和平衡相分析[J]. 材料研究学报, 2010, 24(5): 449-454.
, , . Thermodynamic Calculation and Analysis on Precipitated Phases in 18Cr10NiNb Heat--resistant Steel[J]. Chin J Mater Res, 2010, 24(5): 449-454.

全文: PDF(1090 KB)  
摘要: 将18Cr10NiNb耐热钢在650℃进行10,000h的时效试验,用扫描电镜和透射电镜分析了18Cr10NiNb奥氏体耐热钢的组织, 通过热力学计算研究了500--1400℃碳、铌和氮含量的变化对平衡析出相的影响。结果表明: 在18Cr10NiNb钢的时效过程中在晶内析出了富Nb的MX相,在晶界析出了富Cr的M23C6相。根据热力学计算, 其平衡析出相为MX, M3C6和σ相。MX相和M23C6型碳化物的最高溶解温度分别约为1340℃和840℃。MX相的数量随C和Nb含量的提高而增加。σ相的数量随着C含量的提高而减少。添加0.2%的N元素后, MX相为含有N、Nb、Cr和少量C的复杂碳氮化物,且在其平衡组织中出现了Cr2N相。
关键词 金属材料关  奥氏体耐热钢  18Cr10NiNb  析出相  热力学计算    
Abstract:Long-term aging at 650℃ for the austenitic heat-resistant steel 18Cr10NiNb was conducted till 10,000 h. Effect of aging time on microstructure was investigated by SEM and TEM, and the effects of Nb, C, and N content on equilibrium phases from 500℃ to 1400℃ in 18Cr10NiNb steel have been calculated by using Thermo-Calc software. The results show that Nb-rich MX phase particles precipitate in the grains and Cr-rich M23C6 carbide mainly precipitates at the grain boundaries. The main equilibrium phases in18Cr10NiNb steel at 500--1400℃ are MX,  M23C6 and  σ. The solution temperatures of  MX and M23C6 are about 1340℃ and 840℃, respectively. The amount of MX phase increases with increasing of C and Nb contents. The amount of  σ  phase decreases with increasing of C content. Adding 0.2%N in this the steel, MX phase contains N, Nb, Cr with a small amount of C, which is a complex carbon nitride and makes excellent strengthen effect. Cr2N phase appears as one of the equilibrium phases in the steel at the same time.
Key wordsmetallic materials     austenite heat resistant steel     18Cr10NiNb    precipitation phases     thermodynamic calculation
收稿日期: 2010-05-18     
ZTFLH: 

TG142

 
基金资助:

国家自然科学基金重点资助项目50931003。

 1 R.Viswanathan, J.Sarver, J.M.Tanzosh, Boiler materials for ultra-supercritical coal power plants-steamside oxidation, Journal of Materials Engineering and Performance,  15(3), 255(2006)  2 YANG Huachun, TU Yong, Boiler steel for ultra supercritical sets and feasibility of localized production, Power Equipment,  19(1), 37(2005) (杨华春, 屠勇, 超(超临界)机组锅炉钢管选材与国产化可行性, 发电设备,  19(1), 37(2005))  3  YANG Fu, LI Weimin, REN Yongning, Alloy steel used for supercritical and ultra supercritical pressure boiler, Electrical Equipment,  5(10), 41(2004) (杨 富, 李为民, 任永宁, 超临界、超超临界锅炉用钢, 电力设备,  5(10), 41(2004))  4 ZHAO Chengzhi, WEI Shuangxiong, GAO Yalong, WANG Yanhua, Progress of heat-resistant steel for supercritical and ultra-supercritical steam turbine, Journal of Iron and Steel Research,  19(9), 1(2007) (赵成指, 魏双雄, 高亚龙, 王艳华, 超临界与超超临界汽轮机耐热钢的研究进展, 钢铁研究学报,  19(9), 1(2007)) 5 R.Viswanathan, W.Bakker, Materials for ultra-supercritical coal power plants-boiler materials: Part 1, Journal of Materials Engineering and Performance,  10(1), 81(2001) 6 R.Viswanathan, J.F.Henry, J.Tanzosh, G.Stanko, J.Shingledecker, B.Vitalis, R.Purgert, U.S. program on materials technology for ultra-supercritical coal power plants, Journal of Materials Engineering and Performance,  14(3), 281(2005) 7 A.Iseda, H.Okada, H.Semba, M.Igarashi, Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers, Energy Materials, {\bf 2}(4), 199(2007) 8 YANG Fu, ZHANG Yinglin, REN Yongning, LI Weimin,  The Weld of New-Style Heat-Resistant Steel (Beijing, China Electric Power Press, 2006) p.144 (杨富, 章应霖, 任永宁, 李为民, {\kaishu 新型耐热钢焊接} (北京, 中国电力出版社, 2006) p.144) 9 H.Okada, M.Igarashi, S.Yamamoto, O.Miyahara, A.Iseda, N.Komai, F.Masuyama, in: 2007 Proceedings of the ASME Pressure Vessels and Piping Conference--8th International Conference on Creep and Fatigue at Elevated Temperatures-CREEP8, Long-term service experience with advanced austenitic alloys in Eddystone power station, (United States, American Society of Mechanical Engineers, 2008) p.181 10 N.Komai, M.Igarashi, Y.Minami, H.Mimura, F.Masuyama, M.Prager, P.R.Boyles, in: {\it 2007 Proceedings of the ASME Pressure Vessels and Piping Conference--8th International Conference on Creep and Fatigue at Elevated Temperatures--CREEP8, Field test result of newly developed austenitic steels in the Eddystone Unit No.1 boiler, (United States, American Society of Mechanical Engineers, 2008) p.203 11 DAI Qixun, CHENG Xiaonong, WANG Andong, Comprehensive effect of alloying elements in cryogenic austenitic steels, Materials Review, {\bf 16}(4), 35(2002) (戴起勋, 程晓农, 王安东, 低温奥氏体钢中合金元素的综合作用, 材料导报,  16(4), 35(2002)) 12 A.Beneteau, P.Weisbecker, G.Geandier, E.Aeby-Gautier, B.Appolaire, Austenitization and precipitate dissolution in high nitrogen steels: an in situ high temperature X-ray synchrotron diffraction analysis using the Rietveld method, Materials Science and Engineering A,  393, 63(2005) 13 T.H.Chen, J.R.Yang, Microstructural characterization of simulated heat affected zone in a nitrogen-containing 2205 duplex stainless steel, Materials Science and Engineering A, {\bf 338}, 166(2002) 14 M.Kikuchi, M.Kajihara, S.K.Choi, Cellular precipitation involving both substitutional and interstitial solutes: cellular precipitation of Cr2N in Cr--Ni austenitic steels, Materials Science and Engineering A, 146, 131(1991) 15 R.Ayer, C.F.Klein, C.N.Marzinsky, Instabilities in stabilized austenitic stainless steels, Metallurgical Transactions A,  23A(1), 1992(2001)
[1] 张茂华 毛卫民. 取向电工钢中碳化物在冷变形过程中的行为[J]. 材料研究学报, 2012, 26(4): 344-348.
[2] 韩汾汾 李 辉 楼琅洪. Ti/Al比对镍基定向高温合金组织和性能的影响[J]. 材料研究学报, 2012, 26(4): 361-366.
[3] 段琳娜 刘清友 贾书君 贾成厂 谭峰亮. X100级管线钢的组织和强韧性[J]. 材料研究学报, 2012, 26(4): 443-448.
[4] 欧阳凰生 潘涛 苏航 刘洪喜. Cu对9Ni钢强度和低温韧性的影响[J]. 材料研究学报, 2012, 26(3): 315-320.
[5] 毛志刚 谭丽丽 郑丰 黄洁雯 樊新民 杨柯. 无镍不锈钢冠脉支架力学行为的有限元模拟[J]. 材料研究学报, 2012, 26(2): 125-131.
[6] 许云波 侯晓英 王业勤 吴迪. 高强贝氏体基体钒微合金化TRIP钢的性能[J]. 材料研究学报, 2012, 26(2): 175-180.
[7] 陈俊 唐帅 周砚磊 刘振宇 王国栋 杨颖 陈军平. 低碳Q690qENH高强桥梁钢的动态再结晶行为[J]. 材料研究学报, 2012, 26(2): 199-205.
[8] 李忠文 赵明久 戎利建. 沉淀强化奥氏体合金的氢致断裂行为[J]. 材料研究学报, 2012, 26(2): 113-118.
[9] 樊俊铃 郭杏林 吴承伟 邓德伟. 热处理对FV520B钢疲劳性能的影响[J]. 材料研究学报, 2012, 26(1): 61-67.
[10] 侯自勇 许云波 吴迪. 超快速退火对Nb+Ti--IF钢组织和织构的影响[J]. 材料研究学报, 2012, 26(1): 13-20.
[11] 杨志南 张明 张福成 冯晓勇. 高密度脉冲电流对服役后期高锰钢辙叉组织结构的影响[J]. 材料研究学报, 2011, 25(4): 342-346.
[12] 谢胜涛 刘振宇 方园 于艳 王喆 王国栋. 热轧工艺对Cr12钢表面起皱的影响机制[J]. 材料研究学报, 2011, 25(4): 347-354.
[13] 秦小梅 陈礼清 邓伟 邸洪双. 应变速率对TWIP钢Fe-23Mn-2Al-0.2C力学性能的影响[J]. 材料研究学报, 2011, 25(3): 278-282.
[14] 黄始全 易幼平 李蓬川. 23Co13Ni11Cr3Mo超高强钢的高温变形行为[J]. 材料研究学报, 2011, 25(3): 283-288.
[15] 陈俊 周国平 刘振宇 邱以清 王国栋. 退火时间对0.15\%P铸轧耐候钢冷轧薄带组织性能的影响[J]. 材料研究学报, 2011, 25(3): 268-272.