材料研究学报, 2020, 34(8): 575-583 DOI: 10.11901/1005.3093.2020.047

研究论文

硅橡胶表面壳聚糖载铜凝胶涂层的制备及其抗菌功能

王立蓉1, 关宏宇,1, 陈姗姗,2, 张炳春2, 杨柯2

1 辽宁大学化学系 沈阳 110036

2 中国科学院金属研究所 沈阳 110016

Preparation and Antibacterial Function of an Cu-bearing Chitosan Coating on Silicone Rubber Surface

WANG Lirong1, GUAN Hongyu,1, CHEN Shanshan,2, ZHANG Bingchun2, YANG Ke2

1 Department of Chemistry, Liaoning University, Shenyang 110036, China

2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

通讯作者: 关宏宇,副教授,guanhongyu@lnu.edu.cn,研究方向为高分子材料;陈姗姗,副研究员,sschen@imr.ac.cn,研究方向为生物医用材料

责任编辑: 吴岩

收稿日期: 2020-02-16   修回日期: 2020-03-11   网络出版日期: 2020-08-25

基金资助: 国家重点研发计划.  2018YFC1105504
中国科学院青年创新促进会项目.  2019194

Corresponding authors: GUAN Hongyu, Tel: (024)62202380, E-mail:guanhongyu@lnu.edu.cn;CHEN Shanshan, Tel: (024)83978251, E-mail:sschen@imr.ac.cn

Received: 2020-02-16   Revised: 2020-03-11   Online: 2020-08-25

Fund supported: National Key Research and Development Project.  2018YFC1105504
Youth Innovation Promotion Association, Chinese Academy of Sciences.  2019194

作者简介 About authors

王立蓉,女,1991年生,硕士生

摘要

在硅橡胶表面制备一种具有抗感染功能的涂层—壳聚糖载铜凝胶涂层。为了克服硅橡胶的生物惰性,在其表面制备涂层,先用逐步化学接枝法对其表面进行活化预处理,然后化学接枝壳聚糖载铜凝胶涂层。对比浸泡前后涂层的形貌,研究了活化预处理对功能化涂层与硅橡胶基体之间结合性能的影响。结果表明,用化学接枝法可在硅橡胶表面生成丰富的活性官能团从而提高了功能化涂层与硅橡胶的结合强度。载铜功能化涂层使硅橡胶导管具有良好的抗菌功能。

关键词: 材料表面与界面 ; 功能涂层 ; 逐步化学接枝法 ; 硅橡胶导管 ; 结合性能

Abstract

In order to solve the infection caused by the indwelling catheter, an anti-infective Cu-bearing chitosan coating was prepared on the silicone rubber surface. But it is difficult to prepare a coating on the surface of silicone rubber due to its biological inertness. Therefore, chemical grafting was used to activate the silicone rubber by the dopamine pretreatment, which provides abundant functional groups on the activated silicone rubber surface. The surface morphology and surface properties of the silicone rubber after surface activation pretreatment were characterized by the active functional groups. Onto which, subsequently, the Cu-bearing chitosan coating could be chemically grafted, and then the surface morphology was compared for the coatings before and after immersion test. The effectiveness of pretreatment process was assessed by the bonding force between the functionalized coating and the silicone rubber. It follows that the abundant functional groups offered by the pretreatment on the activated silicone rubber surface may be beneficial for enhancing the adhesive strength of the functionalized coating to the silicon rubber. Thereby, the Cu-bearing chitosan coating makes the silicone rubber catheter have good antibacterial function.

Keywords: surface and interface of material ; functional coating ; stepwise chemical grafting ; silicone rubber catheter ; bonding ability

PDF (8022KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王立蓉, 关宏宇, 陈姗姗, 张炳春, 杨柯. 硅橡胶表面壳聚糖载铜凝胶涂层的制备及其抗菌功能. 材料研究学报[J], 2020, 34(8): 575-583 DOI:10.11901/1005.3093.2020.047

WANG Lirong, GUAN Hongyu, CHEN Shanshan, ZHANG Bingchun, YANG Ke. Preparation and Antibacterial Function of an Cu-bearing Chitosan Coating on Silicone Rubber Surface. Chinese Journal of Materials Research[J], 2020, 34(8): 575-583 DOI:10.11901/1005.3093.2020.047

高分子材料在医疗器械方面的应用十分广泛,有良好的临床效果。高分子材料发展迅速,种类繁多[1,2]。高分子材料可用于各类疾病的诊断和治疗,包括制作植入体内的器械[3]。常用的医用高分子材料,有聚乙烯、聚丙烯、硅橡胶、聚乳酸、聚氨酯等。硅橡胶具有高度生物惰性和超疏水性等性质,已成为主流植入器件用材料,如临床使用的医用导管和人工器官等[4,5]。但是,植入体内的器件可能发生血栓和感染。对慢性病患者和血液透析病人极为重要的血管植入类导管,其相关性感染(Catheter-related blood stream infection, CRBSI)已成为引起相关血液感染的主要原因。导管并发症不仅延长病人的住院时间,增加治疗费用还会加重病人的痛苦,甚至危及其生命。因此,导管并发症受到国内外医学专家和研究者的极大关注并引起了预防CRBSI的研究热潮[6]

为了消除医用导管的临床感染,在导管表面制备抗感染涂层成为研究的热点。有研究表明,在导管表面制备抗菌涂层是一种解决感染的有效方法。目前已有多种功能性导管涂层。氟聚合物涂层包括:水凝胶涂层、仿生表面涂层等[7,8];载药涂层包括:二甲胺四环素和利福平、Ag NPs、庆大霉素、苯二酚改性壳聚糖/透明质酸载药涂层等[9~11];纳米材料涂层包括:目前研究较多的纳米银涂层[12~14]、二氧化钛纳米管载药涂层等。以上这些抗菌涂层,都具有较好的抗菌效果。

医用材料抗菌表面的构建,主要是通过涂层、接枝和本体改性等途径实现。导管表面抗菌涂层的制备简单快捷,且不改变其机械性能。壳聚糖/银-铜复合抗菌剂涂层的抗菌性能优良,对大肠杆菌和金黄色葡萄球菌的抗菌率达到96%以上[13,15]

在表面惰性的硅橡胶导管上制备抗感染功能化涂层,难度很大[16]。目前制备涂层的方法有:层层自组装、浸涂、化学接枝法、溶胶凝胶、电泳沉积、滴涂、原位还原、聚合等[16]。高分子材料具有高度惰性和超疏水性能,在其表面制备涂层,为了使涂层与高分子基体更好的结合,需要对其表面进行活化处理[17]。目前广泛应用的高分子表面活化方法,包括光辐射、等离子电离处理、臭氧引发等。为了使高分子表面产生极性基团,可将亲水性物质化学反应接枝到材料表面[18~21]。作为物质第四态的等离子体,用于表面处理有简捷、高效、环保等优点。但是等离子体处理技术具有时效性和损蚀性,使产业化受到限制。辐射法可使高分子材料表面活化,但是易加速其老化。化学接枝法使用硅烷化试剂等和层层自组装过程使材料表面活化改性,适用性比较广泛,可根据需要改性的基材特性调整化学接枝物质组成,实现功能化涂层的键合。已有研究报道[22],可将壳聚糖键合到钛基体表面:第一,在钛基体表面沉积硅烷(IPTS)并形成Ti-O-Si共价键;第二,在戊二醛与IPTS末端的NH2化学键合成亚胺基,以提供反应性醛基与壳聚糖分子形成共价键;第三,在钛表面的醛基与壳聚糖上的氨基形成亚胺键。多巴胺可在多种材料表面形成聚多巴胺膜层。在硅橡胶表面制备聚多巴胺涂层可引入活性官能团实现功能化涂层与硅橡胶器件的良好结合。本文在硅橡胶表面制备壳聚糖载铜凝胶涂层并研究其抗菌功能。

1 实验方法

1.1 涂层的制备

将厚度为2 mm的硅橡胶裁成面积为1 cm×1 cm的片状样品,然后用去离子水超声清洗两次(每次20 min),再用丙酮清洗5 min后用无水乙醇超声清洗两次(每次20 min),晾干后备用。

将待处理样品浸泡在浓度为2 mg/mL的多巴胺的Tris-HCI溶液(浓度为1.0 mmol/L, pH=8.5)中,置于摇床振荡48 h后用去离子水超声清洗3 min,即得到表面覆盖聚多巴胺(PDA)涂层的材料。然后将表面有PDA涂层的硅橡胶样品浸没在2.5%浓度的戊二醛溶液中24 h,弃去戊二醛溶液后用去离子水冲洗3次,自然晾干后待用。

配制浓度为1.5%的壳聚糖(粘度为50~800 mPa·s、脱乙酰度为90%)乙酸水溶液和质量分数为1%的CuSO4溶液,然后以10(壳聚糖):1(CuSO4)体积比混合,再将其pH值调节至4.5。用提拉法在经多巴胺和戊二醛处理后的硅橡胶材料上制备具有抗菌性能的涂层,自然晾干后在40℃烘箱中干燥6 h。

1.2 样品的表征

使用TBU--95静滴接触角测量仪测定样品的接触角,测试溶液为双蒸水,液滴体积为0.6 μL。

用Buker D8 DISCOVER光电子能谱仪测试样品的X射线光电子能谱(X-ray photoelectron spectroscopy, XPS),并使用XPSPEAK41软件对不同元素的谱图进行分峰拟合处理。用扫描电子显微镜(Scan-ning electron microscope, SEM, HITACHI-3400 N, Japan)观察截面形貌并测量涂层厚度,对比浸泡前后涂层形貌变化。

抗菌功能性评价:选择实验室常用检测抗菌性能的标准菌株:金黄色葡萄球菌(S. aureus, ATCC 25923)进行相关实验。根据ISO 10993-5:2009标准,用直接接触法检测涂层样品的抗菌性能和抑制生物膜形成的能力。将表面有载铜涂层的硅橡胶样品(以壳聚糖涂层处理样品作为对照组)放入24孔板中,在每个样品表面滴加50 μL浓度为2.3×108 CFU/mL的S. aureus菌液。将孔板放入温度为37℃的培养箱中孵育(5%CO2,90%湿度)培养24 h,并设置三组平行实验以作比较。取出24孔板,吸弃细菌液并将PBS轻轻漂洗3次。在每孔加入2.5%的戊二醛溶液1 mL,在4℃冰箱中固定样品表面细菌4 h。取出固定样品后吸弃固定液,用PBS溶液清洗3次。依次在浓度为30%,50%,60%,70%,80%,90%,95%的乙醇溶液中梯度脱水10 min,最后在无水乙醇中脱水2次(每次5 min)。干燥24 h后用扫描电镜观察细菌的形貌。

2 实验结果

2.1 预处理硅橡胶表面的XPS分析

图1给出了硅橡胶表面经聚多巴胺涂层处理的XPS全谱以及C,N和O元素的分峰处理结果。图1a给出了XPS全谱,涂层处理后样品的化学组成为C,N,O和Si。根据XPS精确谱(图1b):N元素在硅橡胶表面存在多种形式,拟合结果表明,N元素在键能为400.58,398.23和397.09 eV处出现三峰。图1c给出了O的精确谱结果,多巴胺聚合后O元素主要以苯酚和苯醌形式存在,分峰结果证实O元素的存在形式为C=O和C-O,表明聚多巴胺成功接枝在硅橡胶表面。此外,在153.29和100.31 eV处可观察到两个强峰,分别为硅橡胶基体中Si2s和Si2p的峰。

图1

图1   逐步化学接枝处理后样品的XPS谱图

Fig.1   XPS spectra of silicone rubber samples treated by stepwise chemical grafting. (a) full spectrum of samples treated by dopamine; (b) N1s and (c) O1s peak-differenation spectrum of samples treated by dopamine; (d) C1s, (e) N1s and (f) O1s peak-differenation spectrum of samples treated by dopamine and glutaraldehyde coupling


对经戊二醛偶联的硅橡胶样品进行XPS检测,并对C,N与O的精确谱进行拟合分峰处理,结果如图1d所示,C元素结合能在286.2 eV处出现新形成的C=N亚胺基键。图1e所示,在N元素结合能在397.14 eV处有C=N键能。如图1f所示,与戊二醛偶联前相比,O元素的存在形式由两种变为三种,以上结果均表明,经戊二醛偶联后成功地引入了醛基。

2.2 预处理硅橡胶的浸润性

浸润性是表征固体表面特性的一个重要参数,表示液体在固体表面铺展的能力或倾向性,其受固体材料表面能、表面粗糙度以及表面微结构的影响。图2给出了硅橡胶经聚多巴胺和戊二醛处理前后的水液滴形貌和相应的接触角。硅橡胶的接触角为110°,经多巴胺处理后的硅橡胶的接触角为79°,说明聚多巴胺的粘附改变了硅橡胶的浸润性。再经戊二醛处理后,硅橡胶的浸润性与聚多巴胺涂层相比没有明显的改变。经聚多巴胺处理后硅橡胶的接触角降低,表面张力下降,为后续的功能化涂层制备提供基本条件。

图2

图2   液滴形貌和接触角

Fig.2   Droplets morphology and water contact angle (a) silicone rubber; (b) dopamine treatment; (c) dopamine-glutaraldehyde cross-linking


2.3 载铜功能涂层的XPS

图3a给出了壳聚糖涂层的全谱,谱图所示涂层中仅含有C,N,O三种元素。使用XPSPEAK41软件对壳聚糖涂层中C、O和N三种元素的谱图进行分峰拟合,发现C1s、N1s与O1s的峰形均与预处理后样品的峰形有较大差异。图3b给出了C元素的分峰拟合结果。共有3个峰,表明C元素有3种存在形式,对应的键能分别为282.05,283.75和285.50 eV,与之对应的存在形式为C-N、C=O和壳聚糖分子六元环内的C-O-C键;图3c给出了N元素的分峰拟合结果。如图所示,因其N元素主要以C-N状态存在而受大环结构和分子长链的影响,其对应的结合能约为397 eV,其中C-N键能为396.68 eV。由于实验中使用壳聚糖是脱乙酰度是90%,存在酰胺键(CO-NH),对应的键能为397.45 eV。图3d给出了壳聚糖为O元素的分峰拟合结果。如图所示,制备了壳聚糖涂层后Ols峰面积大大增加,是壳聚糖分子中O元素含量高的缘故。

图3

图3   壳聚糖涂层和壳聚糖载铜涂层处理后硅橡胶样品的XPS图谱.

Fig.3   XPS spectra of chitosan and copper bearing chitosan coatings. (a), (b), (c) and (d) are respectively full spectrum, C1s, N1s, O1s peaks; (e), (f), (g) and (h) are respectively the XPS peak of Cu2p, C1s, N1s, O1s in the copper bearing chitosan coating


综合上述结果,聚多巴胺-戊二醛-壳聚糖载铜涂层的C元素的分峰拟合谱图与聚多巴胺-戊二醛-壳聚糖涂层中C元素的分峰拟合谱图的形状没有明显的不同,说明在壳聚糖与铜配位螯合过程中C原子的化学环境没有变化[23,24]。如图3g N元素的分峰拟合结果所示:配位后N元素有4种存在形式,其结合能分别为396,396.7,397和398 eV。与图3c中聚多巴胺-戊二醛-壳聚糖涂层的N元素分峰拟合结果相比,在398 eV处出现一新峰,与其它N1s结合能相比增大了1~2 eV,表明在接枝过程中有明显的失电子倾向。图3h给出了O元素的分峰拟合结果,可见配位后O元素有5种存在形式,对应的结合能分别为528.4,529,530,530.5和531eV。与配位前壳聚糖中O元素的精确谱相比,在528.4eV出现一个新峰,与其他O1s结合能相比增加了0.5eV,表明O元素也有失电子倾向。CuSO4中Cu2+的结合能是单一的,位于935.6 eV。从图3e可见,与壳聚糖螯合的Cu元素有3种存在形式,分别对应的结合能是951、941和931 eV,其中结合能为931 eV的Cu2+在配位过程中有得电子倾向。结合壳聚糖分子链上N元素结合能的变化,可以认为这部分Cu2+与壳聚糖的氨基是通过配位键结合的,据此可推断Cu2+的结合能为941 eV是其与壳聚糖上的羟基配位所致。结合能为951 eV的Cu2+,为未参与螯合的铜离子。

2.4 涂层的表面形貌

为了研究预处理对涂层结合力的影响,对比了经预处理前后样品的表面形貌。如图4a和b所示,直接在硅橡胶表面制备功能化涂层,涂层物质在样品表面局部聚集且有明显的翘起。图4d和e给出了经多巴胺/戊二醛预处理后制备的功能化涂层形貌,可见涂层在样品表面分布均匀,没有翘起,表面有均匀的凸起,较平整。图4e-给出了涂层截面厚度测量图,可见涂层的平均厚度为5.06 μm将涂层处理后的样品在生理盐水(0.9%NaCl)中浸泡3 d,观察涂层表面形貌变化以评价结合性能。图4c给出了未经预处理样品浸泡后形貌,可见表面涂层发生脱落;图4f给出了经多巴胺/戊二醛预处理后制备的功能化涂层样品浸泡后形貌,可见涂层均匀,没有明显的脱落,在浸泡液中也未见脱落的涂层物质。

图4

图4   用不同预处理工艺涂层处理后样品的形貌

Fig.4   Morphologies of coated samples with and without pre-treatment (a) macroscopic morphology without pre-treatment, (b) microscopic morphology without pre-treatment, (c) microscopic morphology of sample without pre-treatment after 3 d immersion, (d) macroscopic morphology with pre-treatment, (e) microscopic morphology with pre-treatment, (e-1) sectional morphology and thickness of coating, (f) microscopic morphology of samples with pre-treatment after 3 d immersion


2.5 涂层的抗菌性能

图5给出了金黄色葡糖球菌(S. aureus)分别在壳聚糖涂层和壳聚糖载铜涂层上的粘附状态。如图5a和b所示,S. aureus在壳聚糖涂层表面黏附数量较多,呈聚集状态,局部已形成生物膜。如图5c和d所示,S. aureus在壳聚糖载铜涂层表面只有少数细菌分布。细菌在载铜涂层表面没有聚集,也就没有形成生物膜。这些结果表明,壳聚糖载铜涂层具有明显的抗菌功能,并且降低了细菌在涂层表面的附着力。这也表明,涂层与硅橡胶基体结合良好。

图5

图5   涂层处理后样品表面金黄色葡糖球菌黏附形貌

Fig.5   Adhesion morphology of S.aureus on the surface of the coated samples (a, b) are the morphologies of S.aureus at low and high magnification on the chitosan coating treated samples, (c, d) are the morphologies of S.aureus at low and high magnification on the copper bearing chitosan coating treated samples


3 讨论

针对植入性医疗器件在长期植入过程中的感染问题,本文将化学接枝法增强抗感染涂层与硅橡胶类器件结合,实现了器件的功能性。鉴于多巴胺在不同材料上的强力粘附特性,本文用多巴胺对具有疏水性的硅橡胶进行预处理,引入活性基团OH和NH2,随后通过戊二醛偶联引入醛基,最终将壳聚糖载铜涂层与硅橡胶基体以化学键的形式结合。图1中的XPS结果表明,通过多巴胺聚合引入了N元素。根据图6中多巴胺的聚合机理图可以推断,引入的部分N元素以NH2的形式存在的,为后续的化学接枝反应提供了活性官能团。随后,经戊二醛偶联后,图1e中N1s分峰结果显示出现了N=C峰,表明聚多巴胺与戊二醛形成了新的化学键。以上预处理工艺不仅为后续的化学接枝提供了活性官能团,还影响硅橡胶表面的浸润性。硅橡胶本体为疏水性材料,其水接触角为110.3°,经多巴胺预处理后接触角下降到79°。由于液体在固体表面铺展的能力或倾向性受固体材料表面能、表面粗糙度以及表面微结构的影响[27],通过化学接枝法改变硅橡胶基体的表面能使硅橡胶基体的表面能降低。此外,聚多巴胺在硅橡胶表面的粘附使硅橡胶表面的微观结构发生了变化,从另一个角度改善了水溶性溶液在硅橡胶表面的铺展性。

图6

图6   多巴胺在水溶液中的自聚反应[25]和聚多巴胺自聚反应机理[26]

Fig.6   Dopamine polymerization formula (a) self-polymerization of dopamine in aqueous solution[25] and (b) formation mechanism of polydopamine[26]


壳聚糖载铜功能化涂层溶液为水溶性溶液,因此涂层溶液在经多巴胺和戊二醛两步预处理后的硅橡胶表面的铺展性明显改善。根据浸润吸附理论,高聚物的黏结作用分为两个阶段。第一阶段:高聚物大分子借助宏观布朗运动从溶液中移动到被粘物表面,通过微布朗运动大分子链节逐渐向被粘体表面的极性基团靠近。第二阶段:发生吸附作用。黏结要求达到后,为了进一步改善性能,应改进被粘体对高聚物的浸润性[28]。根据以上理论,本文用聚多巴胺预处理方法大幅提高了功能化涂层溶液在硅橡胶基材上的浸润性,从而提高了涂层在基材上的吸附功。经预处理后的硅橡胶,再通过化学接枝法与壳聚糖载铜功能化涂层(壳聚糖作为对照)以化学键的形式结合。对比功能涂层制备前后的XPS结果,对N1s进行分峰拟合处理结果表明,有酰胺键和亚胺键形成。这表明,壳聚糖涂层以化学键合的形式成功接枝到硅橡胶表面。采用浸泡法对涂层与硅橡胶基体的结合性能进行评价,对比浸泡前后硅橡胶样品的表面形貌,表明经多巴胺和戊二醛两步预处理可有效提高功能化涂层与硅橡胶基体的结合性能。由于涂层厚度对涂层与基体间的结合力影响较大,随着涂层厚度的增加涂层与基体间的结合性能将减弱。因此,本文用提拉法进行一次提拉制备壳聚糖载铜功能化涂层样品和对照组的样品,涂层平均厚度为5.06 μm。

细菌粘附实验结果表明,金黄色葡萄球菌在经一次提拉制备的壳聚糖载铜功能化涂层样品表面的粘附明显少于对照组的壳聚糖涂层处理的样品,表明载铜涂层具有杀菌性能。本文选择壳聚糖涂层样品作为对照组,旨在突显载铜涂层的优异抗菌功能。有研究表明:材料表面的亲/疏水性影响细菌、真菌和蛋白的粘附[29]。Duncan Hewitt还指出[30],疏水作用是影响大多数致病原粘附的主要驱动力。还有学者报道,材料表面亲水性的提高可有效减少材料与蛋白质的接触和非定向结合,从而减少污染物在材料表面的吸附沉积[31]。本文使用的功能涂层为水溶性溶胶物质,得到的功能涂层为亲水涂层,从而使硅橡胶的亲水能力增强,在一定程度上降低了细菌在涂层表面的粘附倾向。制备功能化涂层,一方面提高了硅橡胶表面的亲水性,降低细菌在材料表面的粘附;另一方面,涂层中的铜具有高效的杀菌作用,这种双重作用使硅橡胶表面细菌的粘附能力降低。根据本文的研究结果和理论推断,壳聚糖载铜功能化涂层能有效降低硅橡胶导管发生感染的几率。当然,壳聚糖载铜涂层的抗菌性与涂层中所载铜离子的含量呈正相关。

4 结论

(1) 在硅橡胶表面制备聚多巴胺仿生涂层,可改变其表面微结构并提高表面粗糙度,聚多巴胺中大量的氨基官能团可提高表面的浸润性。

(2) 用逐步化学接枝方法在材料表面构建活性位点,与涂层材料进行化学键合,可提高涂层与硅橡胶基体间的结合强度,从而使硅橡胶具有良好的抗感染功能。

(3) 改性后的医用硅橡胶导管具有良好的抗菌功能,导管表面的涂层能经受长期浸泡,可应用于临床。

参考文献

Yang S Q.

Advances in medical polymer materials

[J]. Scientific and Technological Innovation, 2018, (22): 179

[本文引用: 1]

(杨时巧.

医用高分子材料的研究进展

[J]. 科学技术创新, 2018, (22): 179)

[本文引用: 1]

Chen Y H.

Research and application of functional polymer materials in biomedicine

[J]. Chemical Management, 2018, (17): 96

[本文引用: 1]

(陈跃华.

功能高分子材料在生物医学中的研究应用

[J]. 化工管理, 2018, (17): 96)

[本文引用: 1]

Yin Y X, Li M Q, Zhou C, et al.

Advances in the research of implantable medical devices

[J]. China Med. Dev., 2018, 33(7): 111

[本文引用: 1]

(尹玉霞, 李茂全, 周超.

植入性医疗器械的研究进展

[J]. 中国医疗设备, 2018, 33(7): 111)

[本文引用: 1]

Shen L S, Lin W C.

Application of medical polymer in medical devices

[J]. China Med. Dev. Inf., 2018, 24(3): 32

[本文引用: 1]

(沈丽斯, 林伟聪.

医用高分子在医疗器械方面的应用

[J]. 中国医疗器械信息, 2018, 24(3): 32)

[本文引用: 1]

Li F, Zhang G L, Zhang G.

Research progress of medical silicone rubber

[J]. J. Qingdao Univ. Sci. Technol. (Nat. Sci. Ed.), 2017, 38(Suppl. 2): 96

[本文引用: 1]

(李锋, 张桂林, 张刚.

医用硅橡胶的研究进展

[J]. 青岛科技大学学报(自然科学版), 2017, 38(增刊2): 96)

[本文引用: 1]

Liu Z S.

Study on surface anticoagulant and antibacterial modification of medical polyurethane materials via ultraviolet irradiation

[D]. Guangzhou: South China University of Technology, 2018

[本文引用: 1]

(刘章拴.

医用聚氨酯材料表面抗凝及抗菌的光辐照改性研究

[D]. 广州: 华南理工大学, 2018)

[本文引用: 1]

Smith R S, Zhang Z, Bouchard M, et al.

Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment

[J]. Sci. Transl. Med., 2012, 4: 153ra132

DOI      URL     PMID      [本文引用: 1]

Neuroinflammation as a result of immune cell recruitment into the central nervous system (CNS) is a key pathogenic mechanism of multiple sclerosis (MS). However, current anti-inflammatory interventions depleting immune cells or directly targeting their trafficking into the CNS can have serious side effects, highlighting a need for better immunomodulatory strategies. We detected increased Reelin concentrations in the serum of patients with MS, resulting in increased endothelial permeability to leukocytes through increased nuclear factor kappaB-mediated expression of vascular adhesion molecules. We thus investigated the prophylactic and therapeutic potential of Reelin immunodepletion in experimental autoimmune encephalomyelitis (EAE) and further validated the results in Reelin knockout mice. Removal of plasma Reelin by either approach protected against neuroinflammation and largely abolished the neurological consequences by reducing endothelial permeability and immune cell accumulation in the CNS. Our findings suggest Reelin depletion as a therapeutic approach with an inherent good safety margin for the treatment of MS and other diseases where leukocyte extravasation is a major driver of pathogenicity.

Lareau R, Bell B, Santerre J, et al.

Catheters with high-purity fluoropolymer additives

[P]. America, US8603070B1, 2013

[本文引用: 1]

Gao X P, Yu F Y, Chen M, et al.

Drug release kinetics of rifampicin from composite gel coating on surface of titanium alloy

[J]. Orthoped. J. China, 2018, 26: 649

[本文引用: 1]

(高旭鹏, 余方圆, 陈明.

钛合金表面利福平复合凝胶涂层的药物释放动力学研究

[J]. 中国矫形外科杂志, 2018, 26: 649)

[本文引用: 1]

Zhou W H, Jia Z J, Xiong P, et al.

Bioinspired and biomimetic AgNPs/gentamicin-embedded silk fibroin coatings for robust antibacterial and osteogenetic applications

[J]. ACS Appl. Mater. Interfaces, 2017, 9: 25830

DOI      URL     PMID     

With the progressively increasing demand for orthopedic Ti implants, the balance between two primary complications restricting implant applications is needed to be solved: the lack of bone tissue integration and biomedical device-associated infections (BAI), where emergence of multiresistance bacteria make it worse. Notably, a combination of silver nanoparticles (AgNPs) and a kind of antibiotic can synergistically inhibit bacterial growth, where a low concentration of AgNPs has been confirmed to promote the proliferation and osteogenesis of osteoblasts. In this work, we built AgNPs/gentamicin (Gen)-embedded silk fibroin (SF)-based biomimetic coatings on orthopedic titanium by a facile dipping-drying circular process and with the assistance of polydopamine (PD). Ag(+) was reduced to AgNPs by SF under ultraviolet (UV) irradiation, and then they were detected by transmission electron microscope (TEM) images and UV-visible (UV-vis) analyses. Intriguingly, the addition of Gen highly improved the reduction efficiency of Ag(+). The antibacterial efficiency of SF-based coatings was examined by challenging them with pathogenic Staphylococcus aureus (S. aureus) bacteria which produced biofilms, and consequently, we found that low concentration loading, durable release of Ag(+) (28 days), and 10-fold improvement of antibacterial efficiency were achieved for our novel AgNPs- and Gen-embeded silk fibroin coatings. In bacteria and a cells cocultured system, AgNPs/Gen-embedded coatings strongly inhibited adhesion and proliferation of S. aureus, simultaneously improving cell adhesion and growth. To investigate cytocompatibility and osteogenic potential, different coatings were cultured with MC3T3 cells; AgNPs/Gen-embedded coatings showed generally acceptable biocompatibility (cell adhesion, proliferation, and viability) and accelerated osteoblast maturation (alkaline phosphatase production, matrix secretion, and calcification). Expectantly, this novel biofunctional coating will have promising applications in orthopedic and dental titanium implants thanks to its excellently antibacterial, biocompatible, and osteogenic activities.

Wang H H.

The study on PH-responsive catechol-modified chotosan/hyaluronic acid drug-loaded coating

[D]. Chengdu: Southwest Jiaotong University, 2018

[本文引用: 1]

(王浩浩.

pH响应型邻苯二酚改性壳聚糖/透明质酸载药涂层的研究

[D]. 成都: 西南交通大学, 2018)

[本文引用: 1]

Xuan L H.

Thin films cobtaining silver nanoparticles: their preparation and physical properties

[D]. Harbin: Harbin Institute of Technology, 2014

[本文引用: 1]

(薛丽红.

银纳米粒子复合材料的制备及性能研究

[D]. 哈尔滨: 哈尔滨工业大学, 2014)

[本文引用: 1]

Kang H, Ma S Y, Gao X H, et al.

Preparation of chitosan/silver-copper composite antibacterial agent and its application on silicone rubber matrix

[J]. J. Taiyuan Univ. Technol., 2015, 46: 489

[本文引用: 1]

(康虹, 马森源, 高向华.

壳聚糖/银-铜复合抗菌剂的制备及在硅橡胶基体上的应用

[J]. 太原理工大学学报, 2015, 46: 489)

[本文引用: 1]

Jin H, Gao S J, Wang D M, et al.

The surface structure and anti-adhesion property of Ag-containing coating on vitallium 2000 plus

[J]. Chin. J. Stereol. Image Anal., 2017, 22: 202

[本文引用: 1]

(金华, 高士军, 王道明.

Vitallium 2000 plus含银抗菌涂层表面特征及抗黏附性的研究

[J]. 中国体视学与图像分析, 2017, 22: 202)

[本文引用: 1]

O’Grady N P, Alexander M, Dellinger EP, et al.

Guidelines for the prevention of intravascular catheter-related infections. centers for disease control and prevention

[J]. MMWR Recomm Rep, 2002, 51: 1

URL     PMID      [本文引用: 1]

Wolf M P, Salieb-Beugelaar G B, Hunziker P.

PDMS with designer functionalities—Properties, modifications strategies, and applications

[J]. Progr. Polym. Sci., 2018, 83: 97

[本文引用: 2]

Li Y.

Preparation of stimuli-responsive drug-loaded antibacterial coatings based on self-assembled colloidal particles

[D]. Nanjing: Jiangnan University, 2018

[本文引用: 1]

(李杨.

基于大分子自组装构建刺激响应性载药抗菌涂层

[D]. 南京: 江南大学, 2018)

[本文引用: 1]

Sun Y.

Plasma modification of biomedical polystyrene film surface

[D]. Xi’an: Shaanxi Normal University, 2011

[本文引用: 1]

(孙瑜.

生物医用聚苯乙烯膜表面的等离子体改性研究

[D]. 西安: 陕西师范大学, 2011)

[本文引用: 1]

Yang J.

Plasma abduction PET fibre graf crylic acid

[D]. Suzhou: Suzhou University, 2008

(杨静.

等离子体诱导PET纤维接枝丙烯酸的研究

[D]. 苏州: 苏州大学, 2008)

Xu B.

Application of low temperature plasma technology in surface modification of polymer materials

[D]. Nanjing: Nanjing University of Science and Technology, 2008

(徐彪.

低温等离子体技术在高分子材料表面改性中的应用研究

[D]. 南京: 南京理工大学, 2008)

Shao W, Sun X H, Liu J, et al.

Explorationon on the hydrophilicity of PVP-modified silicon rubber medical material

[J]. New Chem. Mater., 2016, 44(12): 127

[本文引用: 1]

(邵雯, 孙小淏, 刘静.

PVP改性硅橡胶医用材料亲水性的探索

[J]. 化工新型材料, 2016, 44(12): 127)

[本文引用: 1]

Bumgardner J D, Wiser R, Gerard P D, et al.

Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants

[J]. J. Biomater. Sci. Polym. Ed., 2003, 14: 423

URL     PMID      [本文引用: 1]

Ji J H.

XPS study on Cu2+-chitosan chelate and adsorption mechanism of chitosan for Cu2+

[J]. Chin. J. Appl. Chem., 2000, 17: 115

[本文引用: 1]

(季君晖.

Cu2+-壳聚糖螯合物及壳聚糖吸附Cu2+机理的XPS研究

[J]. 应用化学, 2000, 17: 115)

[本文引用: 1]

Ji J H.

Behaviors and mechanism of chitosan adsorbing Cu2+ in solution

[J]. Ion Exchange Adsorpt., 1999, 15: 511

[本文引用: 1]

(季君晖.

壳聚糖对Cu2+吸附行为及机理研究

[J]. 离子交换与吸附, 1999, 15: 511)

[本文引用: 1]

Wang X.

Dopamine-assisted deposition of polyethyleneimn (PEI) for efficient surface functionalization

[D]. Chengdu: Southwest Jiaotong University, 2014

[本文引用: 2]

(王鑫.

多巴胺辅助沉积聚乙烯亚胺薄膜及其表面生物功能化研究

[D]. 成都: 西南交通大学, 2014)

[本文引用: 2]

Chang X J.

The investigation of bio-inspired material dopamine on the modification of PVDF membrane

[D]. Harbin: Harbin Institute of Technology, 2014

[本文引用: 2]

(常晓晶.

仿生材料多巴胺对聚偏氟乙烯超滤膜改性的研究

[D]. 哈尔滨: 哈尔滨工业大学, 2014)

[本文引用: 2]

Li X B, Liu Y.

Control and prepartion to wettability of material surfaces

[J]. J. Mater. Eng., 2008, (4): 74

[本文引用: 1]

(李小兵, 刘 莹.

材料表面润湿性的控制与制备技术

[J]. 材料工程, 2008, (4): 74)

[本文引用: 1]

Yang B. Surface and Interface of Polymer Materials [M]. Beijing: Academic Press, China Standards Press, 2013: 299

[本文引用: 1]

(杨彪. 聚合物材料的表现与界面 [M]. 北京: 中国质检出版社, 中国标准出版社, 2013: 29)

[本文引用: 1]

Busscher H J, Weerkamp A H.

Specific and non-specific interactions in bacterial adhesion to solid substrata

[J]. FEMS Microbiol. Rev., 1987, 46: 165

[本文引用: 1]

Taylor G T, Zheng D, Lee M, et al.

Influence of surface properties on accumulation of conditioning films and marine bacteria on substrata exposed to oligotrophic waters

[J]. Biofouling, 1997, 11: 31

[本文引用: 1]

Duncan-Hewitt, W C.

Nature of the hydrophobic effect. Microbiol Cell Surface Hydrophobicity

[M]. Doyle R J, Rosenberg M. Washington D C: ASM Publications, 1990: 39-73

[本文引用: 1]

/